DX CONSULTING COLUMN 工場DXコンサルティングコラム

専門コンサルタントが執筆するAI・ロボットコラム
最新のAI・ロボット技術に精通したコンサルタントによる定期コラム

DXとデータドリブン

2023.05.12

1.DX進展と売上高の関係について 下のグラフは2021年の経済産業省が出した「デジタル・トランスフォーメーションによる経済へのインパクトによる調整研究」です。企業におけるデジタル・トランスフォーメーションの取組状況に応じて、デジタル・トランスフォーメーション(DX)の進展度を1から3まで定義し、進展度に応じて、企業の売上高にどのような影響があるかを評価しています。 日本・米国・ドイツいずれの国においても、DX進展度の高い企業ほど、2020年度は2019年度に比べて売上高が増加したと回答した企業の比率が高い結果となりました。デジタル・トランスフォーメーションの取組と売上高との因果関係はこのデータだけでは読み取れませんが、相関関係は有していることは明らかとなりました。 DXとは、「ビジネス環境の激しい変化に対応し、データとデジタル技術を活用して、顧客や社会のニーズを基に、製品やサービス、ビジネスモデルを変革するとともに、業務そのものや、組織、プロセス、企業文化・風土を変革し、競争上の優位性を確立すること」を指します。多くの企業がデジタル技術やデジタルデータを活用して、従来型のいわゆる3K(勘・経験・度胸)体制から脱却しようとしています。 ではなぜ、こぞって従来型から脱却しようとしているのでしょうか? (出典)総務省(2021)「デジタル・トランスフォーメーションによる経済へのインパクトに関する調査研究」 2.DXの行き着くところはデータドリブン なぜ、従来型から脱却しようとしているのか?それは、世界的な市場の急激な変化や消費者の価値観や行動の多様化・複雑化により、経験や勘に頼った判断が通用しにくくなっているためです。 ダイナミクスケイパビリティという言葉がありますが、ダイナミクスケイパビリティとは、環境の変化に対応するために、企業が自己変革していく能力であり、「企業変革力」とも呼ばれています。 企業におけるダイナミックケイパビリティは、外部環境の変化に応じて自社が保有する経営資源(ヒト・モノ・カネ・情報・時間)を適切に組み合わせながら、自社の競争優位を確保する手法を指しています。これは昔からある言葉ですが、コロナ以降再度注目されている考え方です。 外部環境の変化に応じて自己変革というのはなかなか難しいことです。このあたりの話をすると「変化を予測する」という考えに行き着く方もいますが、将来予測というのは、なかなか困難な時代です。予測と言えばAIですが、AIで予測できることもありますが、基本的にAIで出来る予測は、過去起こった事柄かつ大量にデータサンプルがあるときに限られます。ゆえに、これまで起こった事のないこと、サンプルが少ないものはAIでも予測することはできないのです。今後、世界がどうなっていくかはどんなテクノロジーを使っても誰もわからないのです。 とは言え、我々は未知の将来に対して準備をしなければなりません。我々に、いま何ができるのでしょうか? それは「データ集めて、それを積極的に活用していき、自社が置かれた状態・環境を正確に・客観的に把握し、必要あれば変革していく」ことです。 市場の動きや行動をデータ化し、分析や考察を通じて、環境の変化に対応していくことが出来ます。 積極的にデータを活用して変わっていくこと、つまり、「データドリブン」によって市場の変化や顧客ニーズをより早く察知できる環境をつくることが重要になってきます。 そして、正しく変革をしていくことによって、自社の競争優位性を確保できると考えられます。 3.データドリブンの壁 データドリブンはデータを蓄積すればすぐ出来ることではありません。データを集める段階から以下のような様々な壁が存在します。 1.データマネジメント データがサイロ化によって部門に閉じてしまい、情報収集ができず、よいインサイトが得られない状況 2.組織文化と人財 データを価値ある資産ととらえて全社で共有するマインドが醸成できておらず、人財に対して実践的な教育ができていないためにデータを活用できなくなっている状況 3.技術 既存システムを改修してデータ活用に取り組むが費用だけかさみ投資対効果が生み出しにくい状況 4.組織間連携 データ活用の目的が組織を超えて伝わらず要約されてしまい重要な細部や本質が抜け落ちている状況 上記の壁を一つ一つ解決していくことで、少しずつ「データドリブン経営」に行き着きます。これらは1年程度で辿り着くものではなく、数年かけて、壁を乗り越えながら到達するものです。10年後自社がどうありたいかを考えた時、長期的な目線でこれらのことを検討していくことがこれからは必要になっていくでしょう。   ■「メーカー経営者のためのAI活用戦略」 取り組み事例に学ぶ!メーカー経営にAIを活⽤する具体的⽅法とは!! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 ■このような方にオススメ 自社の経営にAIがどう適用できるかを知りたいメーカー経営者の方 営業がまだまだ属人的で、営業スタッフ個人のスキルに依存していると感じているメーカー経営者の方 生産技術・生産管理部門も特定の熟練者に知見とノウハウが集中していると感じているメーカー経営者の方 製造部門では熟練技術・職人的な業務があり、属人化・ブラックBOX化していると感じているメーカー経営者の方 在庫管理を担当者の経験や勘に依存して課題を抱えているメーカー経営者の方 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100984   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 https://www.funaisoken.co.jp/dl-contents/jy-ai_S045 いつも当コラムをご愛読いただきありがとうございます。 1.DX進展と売上高の関係について 下のグラフは2021年の経済産業省が出した「デジタル・トランスフォーメーションによる経済へのインパクトによる調整研究」です。企業におけるデジタル・トランスフォーメーションの取組状況に応じて、デジタル・トランスフォーメーション(DX)の進展度を1から3まで定義し、進展度に応じて、企業の売上高にどのような影響があるかを評価しています。 日本・米国・ドイツいずれの国においても、DX進展度の高い企業ほど、2020年度は2019年度に比べて売上高が増加したと回答した企業の比率が高い結果となりました。デジタル・トランスフォーメーションの取組と売上高との因果関係はこのデータだけでは読み取れませんが、相関関係は有していることは明らかとなりました。 DXとは、「ビジネス環境の激しい変化に対応し、データとデジタル技術を活用して、顧客や社会のニーズを基に、製品やサービス、ビジネスモデルを変革するとともに、業務そのものや、組織、プロセス、企業文化・風土を変革し、競争上の優位性を確立すること」を指します。多くの企業がデジタル技術やデジタルデータを活用して、従来型のいわゆる3K(勘・経験・度胸)体制から脱却しようとしています。 ではなぜ、こぞって従来型から脱却しようとしているのでしょうか? (出典)総務省(2021)「デジタル・トランスフォーメーションによる経済へのインパクトに関する調査研究」 2.DXの行き着くところはデータドリブン なぜ、従来型から脱却しようとしているのか?それは、世界的な市場の急激な変化や消費者の価値観や行動の多様化・複雑化により、経験や勘に頼った判断が通用しにくくなっているためです。 ダイナミクスケイパビリティという言葉がありますが、ダイナミクスケイパビリティとは、環境の変化に対応するために、企業が自己変革していく能力であり、「企業変革力」とも呼ばれています。 企業におけるダイナミックケイパビリティは、外部環境の変化に応じて自社が保有する経営資源(ヒト・モノ・カネ・情報・時間)を適切に組み合わせながら、自社の競争優位を確保する手法を指しています。これは昔からある言葉ですが、コロナ以降再度注目されている考え方です。 外部環境の変化に応じて自己変革というのはなかなか難しいことです。このあたりの話をすると「変化を予測する」という考えに行き着く方もいますが、将来予測というのは、なかなか困難な時代です。予測と言えばAIですが、AIで予測できることもありますが、基本的にAIで出来る予測は、過去起こった事柄かつ大量にデータサンプルがあるときに限られます。ゆえに、これまで起こった事のないこと、サンプルが少ないものはAIでも予測することはできないのです。今後、世界がどうなっていくかはどんなテクノロジーを使っても誰もわからないのです。 とは言え、我々は未知の将来に対して準備をしなければなりません。我々に、いま何ができるのでしょうか? それは「データ集めて、それを積極的に活用していき、自社が置かれた状態・環境を正確に・客観的に把握し、必要あれば変革していく」ことです。 市場の動きや行動をデータ化し、分析や考察を通じて、環境の変化に対応していくことが出来ます。 積極的にデータを活用して変わっていくこと、つまり、「データドリブン」によって市場の変化や顧客ニーズをより早く察知できる環境をつくることが重要になってきます。 そして、正しく変革をしていくことによって、自社の競争優位性を確保できると考えられます。 3.データドリブンの壁 データドリブンはデータを蓄積すればすぐ出来ることではありません。データを集める段階から以下のような様々な壁が存在します。 1.データマネジメント データがサイロ化によって部門に閉じてしまい、情報収集ができず、よいインサイトが得られない状況 2.組織文化と人財 データを価値ある資産ととらえて全社で共有するマインドが醸成できておらず、人財に対して実践的な教育ができていないためにデータを活用できなくなっている状況 3.技術 既存システムを改修してデータ活用に取り組むが費用だけかさみ投資対効果が生み出しにくい状況 4.組織間連携 データ活用の目的が組織を超えて伝わらず要約されてしまい重要な細部や本質が抜け落ちている状況 上記の壁を一つ一つ解決していくことで、少しずつ「データドリブン経営」に行き着きます。これらは1年程度で辿り着くものではなく、数年かけて、壁を乗り越えながら到達するものです。10年後自社がどうありたいかを考えた時、長期的な目線でこれらのことを検討していくことがこれからは必要になっていくでしょう。   ■「メーカー経営者のためのAI活用戦略」 取り組み事例に学ぶ!メーカー経営にAIを活⽤する具体的⽅法とは!! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 ■このような方にオススメ 自社の経営にAIがどう適用できるかを知りたいメーカー経営者の方 営業がまだまだ属人的で、営業スタッフ個人のスキルに依存していると感じているメーカー経営者の方 生産技術・生産管理部門も特定の熟練者に知見とノウハウが集中していると感じているメーカー経営者の方 製造部門では熟練技術・職人的な業務があり、属人化・ブラックBOX化していると感じているメーカー経営者の方 在庫管理を担当者の経験や勘に依存して課題を抱えているメーカー経営者の方 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100984   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 https://www.funaisoken.co.jp/dl-contents/jy-ai_S045

中堅・中小製造業のDX・IoT活用のコツ、IoT化の手順

2023.05.22

本コラムでは、中堅・中小製造業の企業におけるDX・IoT活用について、まずはどこからどの様にDX・IoTを導入していくべきか、わかりやすく説明させていただきます。 1.はじめに ここ数年、製造業においてもDX(デジタルトランスフォーメーション)やIoT(モノのインターネット)、AI(人工知能)の活用がテーマになっています。 漠然としたイメージをお持ちの状態で・・・・実際に具体的にDXやIoT、AIを活用した業務の革新や改善を実施したいと考えたとき、生産管理、在庫管理、見積もり作成、製造管理、生産工程管理等など製造業の業務は多岐にわたるため、まずどこから手をつけて良いのか?分からないのが現実だと思います。 私がその立場なら、迷わず最優先で『製造現場』へ導入します。 なぜなら、『製造現場』の革新や改善が会社の売上や利益の向上に最も直結する業務だからです。 製造業は『モノを作る企業』です。 『モノを作る』企業ですので、それを実際に行っている製造現場(工程)の状況を正確に把握(各工程の作業時間、各機器の稼働時間等)することが重要です。製造工程の状況を正確把握することは、生産性向上や品質向上、コスト削減などの多くのメリットをもたらします。 製造業では定期的に製造工程状況を正確に把握し、必要に応じて改善策を実施することが重要です。 今回は、IoTを活用した製造工程の状況把握の目的、製造工程のIoT化手順に関して説明させていただきます。 2.IoTを活用した製造工程の状況把握の目的 まずは、IoTを活用した製造工程状況把握を行う目的に付いて考えたいと思います。 主な目的として5つが考えられます。 ①リアルタイムデータ収集と分析: これがIoT化を行う一番の目的となります。 製造工程の機器や製品の状態データをリアルタイムで収集し、分析することができます。これにより、生産ラインの状況をリアルタイムに把握し、もし問題が発生した場合には早期に対処することができます。 また、これらのデータを利用して各機器の稼働率の確認、稼働待機時間を確認することによりボトルネックになっている工程を把握することもできます。 ②メンテナンスの効率化: 製造工程の機器から収集したデータを分析することで、設備の故障や劣化の予知が可能となり、メンテナンスの計画的な実施が可能になります。 これにより、メンテナンスコストの削減や生産ラインの停止時間の短縮が期待できます。 ③異常検知: 生産ラインでトラブルが発生した場合には、自動的にアラートが発生し異常を通知することが可能です。また、異常内容に合わせた最適な対処方法を提案することができます。これにより、生産ラインの停止時間を最小限に抑え、生産性を向上させることができます。 この時、タイムラグなく生産ラインを停止させるためエッジコンピューティングを活用することになります。 ④製造プロセスの改善: 製造工程中のデータをリアルタイムで収集し、分析することで、製造プロセスの改善策を導き出すことができます。これにより、生産性向上や品質向上など、製造工程全体の改善が期待できます。 ⑤製品のトレーサビリティ: 最近取引条件として管理を求められることが多くなってきている項目です。 管理製品に関する情報を収集することで、製品のトレーサビリティを確保することができます。製品の品質に問題が発生した場合、追跡が容易になり、問題の原因を特定することができます。 IoTを活用した製造工程状況把握は、製造プロセスの改善や生産性の向上、品質の向上など、 多くのメリットをもたらします。 IoTを活用した製造工程の状況把握には、高度な技術や専門知識が必要ですが、効果的に活用することで、競争力のある製品を効率よく生産することが可能になります。 次に、IoTを活用して製造工程を管理する手順をお伝えします。 3.製造工程のIoT化手順 IoTを活用して製造工程を管理するには、まずは製造工程をIoT化する必要があります。 IoTを構成する主な要素は3つです。 デバイス:各種データを取得 ネットワーク:インターネットや社内システムへ接続 プラットフォーム・アプリケーション:データを蓄積・分析する。 これらを下記手順で導入し製造工程をIoT化していきます。 ①IoTセンサーの設置: 製造工程中の機器や製品にIoTセンサーを設置することで、データのリアルタイム収集が可能になります。例えば、温度、湿度、振動、圧力、電流、電圧、位置情報などのセンサーを使用してデータを収取します。 ②ネットワークの構築: IoTセンサーから収集されたデータを集めるために、通信インフラストラクチャを構築する必要があります。製造現場での通信には、無線通信(Wi-Fi、Bluetoothなど)や有線通信(イーサネット、RS-485など)が使用されます。 ③データ収集プラットフォームの導入: IoTセンサーから収集されたデータを収集し、保存、処理するためのデータ収集プラットフォームを導入することが必要です。AWS IoT、Azure IoT、IBM Watson IoTなどを活用するケースが多いです。 ここまで導入することで製造工程の見える化が実現できます。 取得したデータの解析やさらなる活用を行う場合、以下の機能の導入の検討を行います。 ④データ解析ツールの導入: IoTセンサーから収集されたデータを解析するためのツールを導入することで、製造工程の問題点や改善点を特定することができます。 ⑤クラウドコンピューティングの活用: IoTセンサーから収集されたデータをクラウドにアップロードし、クラウドコンピューティングの力を活用することで、リアルタイムのデータ処理や解析を行うことができます。 また、リモートでの監視・管理が可能になります。 ⑥AI/機械学習の活用: IoTセンサーから収集されたデータを用いて、AIや機械学習による予測や最適化を行うことができます。例えば、異常検知や品質予測などの分野で活用されます。 この様な手順で製造工程をIoT化することにより、前述の目的を達成できます。 4.まとめ 今回のコラムでは、中堅・中小製造業のDX・IoT活用のコツ~まずどこから手をつけるか~” につきまして簡単ではありますが説明させていただきました。次回以降、それぞれの項目をより詳しく説明していく予定です。 今回の紹介した内容をご検討頂き、自社での製造工程のIoT化導入検討や、過去に断念されたIoT化を再度進めていただければ幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■関連するセミナーのご案内 「多品種少量生産板金加工業の為の原価改善!」 社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100820 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100820 多品種少量生産の塗装&外観検査工程ロボット活用!社長セミナー 「多品種少量生産の塗装加工業の社長が取り組むべきロボット戦略」 ロボットによる自動塗装で人手を増やさずに生産性を上げる! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100495 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100495 いつも当コラムをご愛読頂きましてありがとうございます。 本コラムでは、中堅・中小製造業の企業におけるDX・IoT活用について、まずはどこからどの様にDX・IoTを導入していくべきか、わかりやすく説明させていただきます。 1.はじめに ここ数年、製造業においてもDX(デジタルトランスフォーメーション)やIoT(モノのインターネット)、AI(人工知能)の活用がテーマになっています。 漠然としたイメージをお持ちの状態で・・・・実際に具体的にDXやIoT、AIを活用した業務の革新や改善を実施したいと考えたとき、生産管理、在庫管理、見積もり作成、製造管理、生産工程管理等など製造業の業務は多岐にわたるため、まずどこから手をつけて良いのか?分からないのが現実だと思います。 私がその立場なら、迷わず最優先で『製造現場』へ導入します。 なぜなら、『製造現場』の革新や改善が会社の売上や利益の向上に最も直結する業務だからです。 製造業は『モノを作る企業』です。 『モノを作る』企業ですので、それを実際に行っている製造現場(工程)の状況を正確に把握(各工程の作業時間、各機器の稼働時間等)することが重要です。製造工程の状況を正確把握することは、生産性向上や品質向上、コスト削減などの多くのメリットをもたらします。 製造業では定期的に製造工程状況を正確に把握し、必要に応じて改善策を実施することが重要です。 今回は、IoTを活用した製造工程の状況把握の目的、製造工程のIoT化手順に関して説明させていただきます。 2.IoTを活用した製造工程の状況把握の目的 まずは、IoTを活用した製造工程状況把握を行う目的に付いて考えたいと思います。 主な目的として5つが考えられます。 ①リアルタイムデータ収集と分析: これがIoT化を行う一番の目的となります。 製造工程の機器や製品の状態データをリアルタイムで収集し、分析することができます。これにより、生産ラインの状況をリアルタイムに把握し、もし問題が発生した場合には早期に対処することができます。 また、これらのデータを利用して各機器の稼働率の確認、稼働待機時間を確認することによりボトルネックになっている工程を把握することもできます。 ②メンテナンスの効率化: 製造工程の機器から収集したデータを分析することで、設備の故障や劣化の予知が可能となり、メンテナンスの計画的な実施が可能になります。 これにより、メンテナンスコストの削減や生産ラインの停止時間の短縮が期待できます。 ③異常検知: 生産ラインでトラブルが発生した場合には、自動的にアラートが発生し異常を通知することが可能です。また、異常内容に合わせた最適な対処方法を提案することができます。これにより、生産ラインの停止時間を最小限に抑え、生産性を向上させることができます。 この時、タイムラグなく生産ラインを停止させるためエッジコンピューティングを活用することになります。 ④製造プロセスの改善: 製造工程中のデータをリアルタイムで収集し、分析することで、製造プロセスの改善策を導き出すことができます。これにより、生産性向上や品質向上など、製造工程全体の改善が期待できます。 ⑤製品のトレーサビリティ: 最近取引条件として管理を求められることが多くなってきている項目です。 管理製品に関する情報を収集することで、製品のトレーサビリティを確保することができます。製品の品質に問題が発生した場合、追跡が容易になり、問題の原因を特定することができます。 IoTを活用した製造工程状況把握は、製造プロセスの改善や生産性の向上、品質の向上など、 多くのメリットをもたらします。 IoTを活用した製造工程の状況把握には、高度な技術や専門知識が必要ですが、効果的に活用することで、競争力のある製品を効率よく生産することが可能になります。 次に、IoTを活用して製造工程を管理する手順をお伝えします。 3.製造工程のIoT化手順 IoTを活用して製造工程を管理するには、まずは製造工程をIoT化する必要があります。 IoTを構成する主な要素は3つです。 デバイス:各種データを取得 ネットワーク:インターネットや社内システムへ接続 プラットフォーム・アプリケーション:データを蓄積・分析する。 これらを下記手順で導入し製造工程をIoT化していきます。 ①IoTセンサーの設置: 製造工程中の機器や製品にIoTセンサーを設置することで、データのリアルタイム収集が可能になります。例えば、温度、湿度、振動、圧力、電流、電圧、位置情報などのセンサーを使用してデータを収取します。 ②ネットワークの構築: IoTセンサーから収集されたデータを集めるために、通信インフラストラクチャを構築する必要があります。製造現場での通信には、無線通信(Wi-Fi、Bluetoothなど)や有線通信(イーサネット、RS-485など)が使用されます。 ③データ収集プラットフォームの導入: IoTセンサーから収集されたデータを収集し、保存、処理するためのデータ収集プラットフォームを導入することが必要です。AWS IoT、Azure IoT、IBM Watson IoTなどを活用するケースが多いです。 ここまで導入することで製造工程の見える化が実現できます。 取得したデータの解析やさらなる活用を行う場合、以下の機能の導入の検討を行います。 ④データ解析ツールの導入: IoTセンサーから収集されたデータを解析するためのツールを導入することで、製造工程の問題点や改善点を特定することができます。 ⑤クラウドコンピューティングの活用: IoTセンサーから収集されたデータをクラウドにアップロードし、クラウドコンピューティングの力を活用することで、リアルタイムのデータ処理や解析を行うことができます。 また、リモートでの監視・管理が可能になります。 ⑥AI/機械学習の活用: IoTセンサーから収集されたデータを用いて、AIや機械学習による予測や最適化を行うことができます。例えば、異常検知や品質予測などの分野で活用されます。 この様な手順で製造工程をIoT化することにより、前述の目的を達成できます。 4.まとめ 今回のコラムでは、中堅・中小製造業のDX・IoT活用のコツ~まずどこから手をつけるか~” につきまして簡単ではありますが説明させていただきました。次回以降、それぞれの項目をより詳しく説明していく予定です。 今回の紹介した内容をご検討頂き、自社での製造工程のIoT化導入検討や、過去に断念されたIoT化を再度進めていただければ幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■関連するセミナーのご案内 「多品種少量生産板金加工業の為の原価改善!」 社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100820 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100820 多品種少量生産の塗装&外観検査工程ロボット活用!社長セミナー 「多品種少量生産の塗装加工業の社長が取り組むべきロボット戦略」 ロボットによる自動塗装で人手を増やさずに生産性を上げる! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100495 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100495

正確な原価管理のためのたった1つの要素

2023.05.09

原価管理と一言にいっても、様々な管理手法・システムがあり、どれが良いのかを判断することが難しく考えられている方も多いのではないでしょうか? しかし、どんな手法・システムを利用するにあたっても、重要な1つの要素が欠けていれば、活用を見据えた原価管理は出来ないのです。今回は原価管理の活用先やどのような原価管理が良いのかについて説明していきます。 1.原価管理に必要な要素とは? まず前提として、今回記述する内容は財務の為の管理ではありません。社内で管理・改善していくための原価管理となります。 さて、本題となる原価管理に必要な要素なのですが、原価管理をする上で必要な要素とは、 「データ化の障壁が高い項目を如何にデータ化できるか」 です。 必要な要素に関して、原価の構造図を用いて説明していきます。 この図は本やインターネットでもよく見るので馴染み深い方もいると思います。 これらの項目の管理方法は大きく下記画像のように分類することができます。 まず、原価、製造原価、利益は「計算によって求められる項目」であり、 原価=製造原価+管理費・販売費 製造原価=労務費+材料費+光熱費+その他 利益=売価‐原価 となります。 原価管理において、「如何に原価管理システムに計算させるか?」が対象要素を管理する上で必要な手段となります。 原価管理システムであれば、基本機能として備わっているものであるため、この項目の管理は比較的容易であると考えられます。 次に、売価、材料費、その他、管理費・販売費は「データ化されている項目」であり、 業務をする上で請求書や見積書など、必ず紙やExcel、システムに記載しているものとなります。 原価管理においては、「如何に原価管理システムに入力することが出来るか?」が肝になっています。 この項目を管理するためには、手入力、システム間データ連携、RPA等により比較的容易に管理が出来るようになります。 最後に労務費、光熱費は「データ化の障壁が高い項目」であり、 特に労務費は製造工数を正確に把握しないと管理することができません。 労務費が把握できないと、製造原価を把握することが出来ず、さらに原価、利益も把握することが出来なくなってしまいます。 つまり、正確な原価管理を実行するためには、正確な労務費(製造工数)を把握することが必須となるのです。 2.原価管理をすることによる副次的な効果・原価管理の活用先 正確な製造工数が把握できるようになり、正確な原価管理が出来るようになると、そのデータを活用した現場改善が出来るようになっていきます。 製造工数が把握できておらず、おおざっぱな標準工数で原価管理してしまうと、原価改善を行う際に不明確なデータをもとに改善に取り組むことになるため、会社にとってはリスクとなり得る可能性があります。 原価管理をするにあたって、製造工数を取得する際に最低限必要な情報があります。 誰が どの製品の(どの注文番号の) どの工程を どの設備で いくつ どのくらいの時間をかけて 段取り/加工したのか 上記の情報を製造工数と紐づけることができると、その項目別で分析が出来るようになるのです。 例)注文番号別分析、製品別分析、工程別分析、設備別分析、担当者別分析、時系列分析 分析によって、ボトルネックを検出することが出来るようになり、改善による効果シミュレーションができるようになるため、現場の実態に即した投資が出来るようになっていきます。 また、工数データを集計して工場のモニターに表示することで、現場の方への改善の動機付けを行うことも可能になっていきます。 3.まとめ 正確な原価管理をするためには正確な製造工数が必要であり、さらにその製造工数は現場改善や投資判断に活用できるということをご理解いただけたと思います。 では、具体的にどのように正確な製造工数を取得していくのが良いのか?については、弊社主催の原価管理セミナーまたはHP問い合わせにて事例をもとに詳細にお話ししておりますので、ご興味をお持ちになりましたら、申込・お問い合わせいただければと思います。   【原価管理改善で収益UP】原価管理の方法と成功事例紹介レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 個別原価を「見える化」で現場からの原価改善!! 最新事例解説レポート! 従業員30名金属加工業の原価改善事例!! 工程毎の作業時間を可視化する事で現場からの原価改善が促進 生産管理、原価管理システムを導入 手書き日報からリアルタイム日報に運用を改善 https://www.funaisoken.co.jp/dl-contents/smart-factory__00950   ■関連するセミナーのご案内 「多品種少量生産機械加工業の為の原価改善!」 社長セミナー 生産管理&原価管理を徹底見直し!原価率削減!粗利改善!儲け改善! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/099993 ■開催内容 材料費高騰対策!儲けの改善の仕組み導入成功編 機械加工業における生産管理・原価管理業務の課題 生産管理原価管理システムの導入失敗例 成功する生産管理原価管理システムの業務改善手順と成功する具体的導入プロセス 個別製品原価、得意先別製品原価、工程別原価をデータ化した事例紹介 生産管理原価管理システム+BIツールで経営・現場が必要なデータを見える化する具体的方法 生産管理原価管理システムの導入・活用で個別原価管理を安価で成功させるためのベンダー選び ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/06/06 (火) 13:00~15:00 2023/06/08 (木) 13:00~15:00 2023/06/13 (火) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/099993 いつも当コラムをご愛読いただきありがとうございます。 原価管理と一言にいっても、様々な管理手法・システムがあり、どれが良いのかを判断することが難しく考えられている方も多いのではないでしょうか? しかし、どんな手法・システムを利用するにあたっても、重要な1つの要素が欠けていれば、活用を見据えた原価管理は出来ないのです。今回は原価管理の活用先やどのような原価管理が良いのかについて説明していきます。 1.原価管理に必要な要素とは? まず前提として、今回記述する内容は財務の為の管理ではありません。社内で管理・改善していくための原価管理となります。 さて、本題となる原価管理に必要な要素なのですが、原価管理をする上で必要な要素とは、 「データ化の障壁が高い項目を如何にデータ化できるか」 です。 必要な要素に関して、原価の構造図を用いて説明していきます。 この図は本やインターネットでもよく見るので馴染み深い方もいると思います。 これらの項目の管理方法は大きく下記画像のように分類することができます。 まず、原価、製造原価、利益は「計算によって求められる項目」であり、 原価=製造原価+管理費・販売費 製造原価=労務費+材料費+光熱費+その他 利益=売価‐原価 となります。 原価管理において、「如何に原価管理システムに計算させるか?」が対象要素を管理する上で必要な手段となります。 原価管理システムであれば、基本機能として備わっているものであるため、この項目の管理は比較的容易であると考えられます。 次に、売価、材料費、その他、管理費・販売費は「データ化されている項目」であり、 業務をする上で請求書や見積書など、必ず紙やExcel、システムに記載しているものとなります。 原価管理においては、「如何に原価管理システムに入力することが出来るか?」が肝になっています。 この項目を管理するためには、手入力、システム間データ連携、RPA等により比較的容易に管理が出来るようになります。 最後に労務費、光熱費は「データ化の障壁が高い項目」であり、 特に労務費は製造工数を正確に把握しないと管理することができません。 労務費が把握できないと、製造原価を把握することが出来ず、さらに原価、利益も把握することが出来なくなってしまいます。 つまり、正確な原価管理を実行するためには、正確な労務費(製造工数)を把握することが必須となるのです。 2.原価管理をすることによる副次的な効果・原価管理の活用先 正確な製造工数が把握できるようになり、正確な原価管理が出来るようになると、そのデータを活用した現場改善が出来るようになっていきます。 製造工数が把握できておらず、おおざっぱな標準工数で原価管理してしまうと、原価改善を行う際に不明確なデータをもとに改善に取り組むことになるため、会社にとってはリスクとなり得る可能性があります。 原価管理をするにあたって、製造工数を取得する際に最低限必要な情報があります。 誰が どの製品の(どの注文番号の) どの工程を どの設備で いくつ どのくらいの時間をかけて 段取り/加工したのか 上記の情報を製造工数と紐づけることができると、その項目別で分析が出来るようになるのです。 例)注文番号別分析、製品別分析、工程別分析、設備別分析、担当者別分析、時系列分析 分析によって、ボトルネックを検出することが出来るようになり、改善による効果シミュレーションができるようになるため、現場の実態に即した投資が出来るようになっていきます。 また、工数データを集計して工場のモニターに表示することで、現場の方への改善の動機付けを行うことも可能になっていきます。 3.まとめ 正確な原価管理をするためには正確な製造工数が必要であり、さらにその製造工数は現場改善や投資判断に活用できるということをご理解いただけたと思います。 では、具体的にどのように正確な製造工数を取得していくのが良いのか?については、弊社主催の原価管理セミナーまたはHP問い合わせにて事例をもとに詳細にお話ししておりますので、ご興味をお持ちになりましたら、申込・お問い合わせいただければと思います。   【原価管理改善で収益UP】原価管理の方法と成功事例紹介レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 個別原価を「見える化」で現場からの原価改善!! 最新事例解説レポート! 従業員30名金属加工業の原価改善事例!! 工程毎の作業時間を可視化する事で現場からの原価改善が促進 生産管理、原価管理システムを導入 手書き日報からリアルタイム日報に運用を改善 https://www.funaisoken.co.jp/dl-contents/smart-factory__00950   ■関連するセミナーのご案内 「多品種少量生産機械加工業の為の原価改善!」 社長セミナー 生産管理&原価管理を徹底見直し!原価率削減!粗利改善!儲け改善! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/099993 ■開催内容 材料費高騰対策!儲けの改善の仕組み導入成功編 機械加工業における生産管理・原価管理業務の課題 生産管理原価管理システムの導入失敗例 成功する生産管理原価管理システムの業務改善手順と成功する具体的導入プロセス 個別製品原価、得意先別製品原価、工程別原価をデータ化した事例紹介 生産管理原価管理システム+BIツールで経営・現場が必要なデータを見える化する具体的方法 生産管理原価管理システムの導入・活用で個別原価管理を安価で成功させるためのベンダー選び ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/06/06 (火) 13:00~15:00 2023/06/08 (木) 13:00~15:00 2023/06/13 (火) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/099993

原価計算の6つの方法

2023.04.25

原価計算の種類は全部で6種類ありますが、2種類1セットで3つの用途に分類できます。注意したいのは各々、独立して利用するのではなく、用途に応じて組み合わせて使います。 『***原価計算』は原価計算で行われる、最小単位、これ以上、細かく分けることができないものといえます。 6種類の原価計算を3つの用途に分類して簡単に説明します。 1.実際原価計算と標準原価計算 ・実際原価計算 実際にかかった費用(実際原価)から製品の原価を求める考え方で製品を提供する際に発生したすべての費用、つまり直接材料費、直接労働費、間接費で計算します。 実際のコストを正確に把握できるというメリットがありますが、生産ラインの運用状況によって、コストが大きく変動することがあります。 ・標準原価計算 製品を提供するために必要なコストを見積もり、その見積もりに基づいてコストを計算する考え方で、具体的には、直接材料費、直接労働費、間接費などの各種コストを事前に定められた標準理論で見積もり、その合計を製品やサービスのコストとして計算します。生産ラインの運用状況によるコスト変動に左右されず、一定の安定性を持ったコスト計算ができるというメリットがあります。 2.個別原価計算と総合原価計算 ・個別原価計算 製品ごとの原価を算出するために、製品ごとの利益を明確にすることができます。オーダーメイドの生産形態を想定して原価計算を行う考え方で具体的には特注のスーツ、革靴、家具などがあります 用語集|個別原価計算 ・総合原価計算 同製品などをひとまとめにして原価を導き出す方法です。同一仕様の製品を連続大量生産方式で生産する企業や、少品種大量生産方式を採用している企業に向いている方法といえます。 3.全部原価計算と直接原価計算 ・全部原価計算 変動費、固定費(建物、設備などの減価償却費)すべてひっくるめて原価計算を行う考え方です。 ・直接原価計算 固定費(建物、設備などの減価償却費)を含まず変動費のみで原価計算を行う考え方です。 変動費は生産数に比例して増えていく費用で例えば材料費、労務費があります。 対して固定費は生産数に関係なく、必ず発生する費用、例えば機械の減価償却費などがあります。 固定費と生産効率は直接的な関係がないため、固定費を含んだ全部原価計算よりも固定費を含まない直接原価計算のほうが現場の状況を把握しやすい特徴があります。 4.まとめ 今回のコラムでは原価計算の方法について簡単に解説させていただきました。 実際原価計算と標準原価計算、個別原価計算と総合原価計算、全部原価計算と直接原価計算は3つの用途によって使い分けることをおさえておけば、混乱しづらいことはないと思います。 商品の製造にかかった原価を正確に把握する原価計算は、売上の確保や健全な企業経営に必要不可欠です。 しかし、原価計算の考え方がいまひとつよくわからないという方も多いのではないでしょうか。上記内容について、より具体的に詳細をお知りになりたい場合はお気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■関連するセミナーのご案内 自動車部品製造業のDXセミナー ろう付け・切削・プレス 超低コストで見える化・利益向上 セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/110786 材料費高騰対策!儲けの改善の仕組み導入成功編 製造業における生産管理・原価管理業務の課題 生産管理・原価管理システムの導入失敗例 成功する生産管理・原価管理システムの業務改善手順と成功する具体的導入プロセス 個別製品原価、得意先別製品原価、工程別原価をデータ化した事例紹介 生産管理・原価管理システム+BIツールで経営・現場が必要なデータを見える化する具体的方法 生産管理・原価管理システムの導入・活用で個別原価管理を安価で成功させる為のベンダー選び ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2024/03/21 (木) 13:00~15:00 2024/03/25 (月) 13:00~15:00 2024/03/27 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/110786 原価計算の種類は全部で6種類ありますが、2種類1セットで3つの用途に分類できます。注意したいのは各々、独立して利用するのではなく、用途に応じて組み合わせて使います。 『***原価計算』は原価計算で行われる、最小単位、これ以上、細かく分けることができないものといえます。 6種類の原価計算を3つの用途に分類して簡単に説明します。 1.実際原価計算と標準原価計算 ・実際原価計算 実際にかかった費用(実際原価)から製品の原価を求める考え方で製品を提供する際に発生したすべての費用、つまり直接材料費、直接労働費、間接費で計算します。 実際のコストを正確に把握できるというメリットがありますが、生産ラインの運用状況によって、コストが大きく変動することがあります。 ・標準原価計算 製品を提供するために必要なコストを見積もり、その見積もりに基づいてコストを計算する考え方で、具体的には、直接材料費、直接労働費、間接費などの各種コストを事前に定められた標準理論で見積もり、その合計を製品やサービスのコストとして計算します。生産ラインの運用状況によるコスト変動に左右されず、一定の安定性を持ったコスト計算ができるというメリットがあります。 2.個別原価計算と総合原価計算 ・個別原価計算 製品ごとの原価を算出するために、製品ごとの利益を明確にすることができます。オーダーメイドの生産形態を想定して原価計算を行う考え方で具体的には特注のスーツ、革靴、家具などがあります 用語集|個別原価計算 ・総合原価計算 同製品などをひとまとめにして原価を導き出す方法です。同一仕様の製品を連続大量生産方式で生産する企業や、少品種大量生産方式を採用している企業に向いている方法といえます。 3.全部原価計算と直接原価計算 ・全部原価計算 変動費、固定費(建物、設備などの減価償却費)すべてひっくるめて原価計算を行う考え方です。 ・直接原価計算 固定費(建物、設備などの減価償却費)を含まず変動費のみで原価計算を行う考え方です。 変動費は生産数に比例して増えていく費用で例えば材料費、労務費があります。 対して固定費は生産数に関係なく、必ず発生する費用、例えば機械の減価償却費などがあります。 固定費と生産効率は直接的な関係がないため、固定費を含んだ全部原価計算よりも固定費を含まない直接原価計算のほうが現場の状況を把握しやすい特徴があります。 4.まとめ 今回のコラムでは原価計算の方法について簡単に解説させていただきました。 実際原価計算と標準原価計算、個別原価計算と総合原価計算、全部原価計算と直接原価計算は3つの用途によって使い分けることをおさえておけば、混乱しづらいことはないと思います。 商品の製造にかかった原価を正確に把握する原価計算は、売上の確保や健全な企業経営に必要不可欠です。 しかし、原価計算の考え方がいまひとつよくわからないという方も多いのではないでしょうか。上記内容について、より具体的に詳細をお知りになりたい場合はお気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■関連するセミナーのご案内 自動車部品製造業のDXセミナー ろう付け・切削・プレス 超低コストで見える化・利益向上 セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/110786 材料費高騰対策!儲けの改善の仕組み導入成功編 製造業における生産管理・原価管理業務の課題 生産管理・原価管理システムの導入失敗例 成功する生産管理・原価管理システムの業務改善手順と成功する具体的導入プロセス 個別製品原価、得意先別製品原価、工程別原価をデータ化した事例紹介 生産管理・原価管理システム+BIツールで経営・現場が必要なデータを見える化する具体的方法 生産管理・原価管理システムの導入・活用で個別原価管理を安価で成功させる為のベンダー選び ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2024/03/21 (木) 13:00~15:00 2024/03/25 (月) 13:00~15:00 2024/03/27 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/110786

『DX白書2023』を読み解く

2023.04.19

今回は、IPAが発表した『DX白書2023』について述べさせて頂きます。 1.日本のDXの現状 2023年2月9日 IPA(独立行政法人 情報処理推進機構)が『DX白書2023』を発表しました。 これは、2021年10月に発行された『DX白書2021』に続く第2段となります。 DX白書は日本および米国企業のDXに関する戦略、人材、技術について調査・分析した結果となりますが、本コラムで日本企業と製造業のDXへの取り組み状況を抜き出しております。 経済産業省が定めているDXの定義は、『企業がビジネス環境の激しい変化に対応し、データとデジタル技術を活用して、顧客や社会のニーズを基に、製品サービス、ビジネスモデルを変革するとともに、業務そのものや、組織、プロセス、企業文化・風土を変革し、競争の優位性を確立すること』です。 日本でDXに取り組んでいる企業(全業種)は、「全社戦略に基づき、全社的にDXに取り組んでいる」・「全社戦略に基づき、一部の部門においてDXに取り組んでる」・「部署ごとに個別でDXに取り組んでいる」の合計は69.3%となります。 2021年度と比較をすると、各項目共数%ずつ増えており13.5%増加しています。 従業員規模別(全業種)に見ると、日本は従業員規模が大きい企業ほどDXへの取り組みが進んでいることがわかります。 従業員数が「1001人以上」の企業においてはDXに取り組んでいる割合は94.8%。 「300人以上、1000人以下」が82%、「100人以下」の企業では39.6%まで下がります。 「全社戦略に基づき、全社的にDXに取り組んでいる」の割合も従業員規模が小さくなるにつれて、減っていることがわかります。 従業員規模が小さい企業ではDXへの取り組みが進んでいない、取り組んでいたとしても全社戦略として取り組めていないことがわかります。 業種別に見ると、DXに取り組んでいる割合が高いのは「金融業、保険業」83.7%割合が低いのは「サービス業」55.4%となっています。 製造業に関しては、全社戦略に基づきDXに取り組んでいる企業56.5%(2021年は45.3%)。 全社戦略ではないがDXに取り組んでいる企業が14.7%(同13.6%)。 合わせると71.2%(同58.9%)となり、何らかの形DXに取り組んでいる企業が70%を超えています。 2.そもそも組織のDXとは 70%と高い数値は出ていますが、新製品・サービスの創出、顧客価値創出やビジネスモデルの変革といったトランスフォーメーションのレベルの成果ではなく、アナログ・物理データのデジタル化(デジタイゼーション)や業務の効率化による生産性の向上(デジタライゼーション)で数値が高くなっているように感じます。 本来の目的「X=変革」で成果を出せている企業は、非常に少ないのではないでしょうか。 そもそも組織のDXとは、その組織の経営の問題であり、デジタルはその経営変革の重要なリソースでしかありません。 経営者自身がデジタルの意味を率先して理解し、自分は何のため誰のためにビジネスをしているかという覚悟とビジョンを提示し、DX推進のリーダーシップを発揮することが何よりも大切です。 そのうえで、そのビジョンを実現するために、「顧客志向」でビジネス価値をできるだけ直接的に届けられるようにデジタルの力で組織を変えていくこと、そのためにはメンバーも問題を発見し自ら動けるようにマインドを変えていくこと、顧客と直接つながるためのデータのしくみを整備していくこと、それを実現するためにIoTやAIやアジャイル開発などがあるのです。 3.まとめ 今回のコラムでは『DX白書2023』について、簡単ではありますが述べさせて頂きました。 上記した通り、製造業に於いては、アナログ・物理データのデジタル化や業務の効率化による生産性の向上が、DXの中心になっていると思います。 DXに取り組みたい、何か始めればよいか分からない等ございましたら、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   【製造業】経営者向け!!工場の協働ロボット活用成功事例集 ▼事例レポート無料ダウンロードお申し込みはこちら▼ 中小製造業のロボット活用は協働ロボットが主流になる! 中小製造業が実践すべき協働ロボット活用のポイントと具体的な方法を解説! さらに、実際の中小製造業における協働ロボット活用成功事例をこの1冊にまとめました! https://www.funaisoken.co.jp/dl-contents/jy-core-system_S045   ■関連するセミナーのご案内 多品種少量生産の塗装&外観検査工程ロボット活用!社長セミナー 「多品種少量生産の塗装加工業の社長が取り組むべきロボット戦略」 ロボットによる自動塗装で人手を増やさずに生産性を上げる! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100495 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100495 いつも当コラムをご愛読頂きましてありがとうございます。 今回は、IPAが発表した『DX白書2023』について述べさせて頂きます。 1.日本のDXの現状 2023年2月9日 IPA(独立行政法人 情報処理推進機構)が『DX白書2023』を発表しました。 これは、2021年10月に発行された『DX白書2021』に続く第2段となります。 DX白書は日本および米国企業のDXに関する戦略、人材、技術について調査・分析した結果となりますが、本コラムで日本企業と製造業のDXへの取り組み状況を抜き出しております。 経済産業省が定めているDXの定義は、『企業がビジネス環境の激しい変化に対応し、データとデジタル技術を活用して、顧客や社会のニーズを基に、製品サービス、ビジネスモデルを変革するとともに、業務そのものや、組織、プロセス、企業文化・風土を変革し、競争の優位性を確立すること』です。 日本でDXに取り組んでいる企業(全業種)は、「全社戦略に基づき、全社的にDXに取り組んでいる」・「全社戦略に基づき、一部の部門においてDXに取り組んでる」・「部署ごとに個別でDXに取り組んでいる」の合計は69.3%となります。 2021年度と比較をすると、各項目共数%ずつ増えており13.5%増加しています。 従業員規模別(全業種)に見ると、日本は従業員規模が大きい企業ほどDXへの取り組みが進んでいることがわかります。 従業員数が「1001人以上」の企業においてはDXに取り組んでいる割合は94.8%。 「300人以上、1000人以下」が82%、「100人以下」の企業では39.6%まで下がります。 「全社戦略に基づき、全社的にDXに取り組んでいる」の割合も従業員規模が小さくなるにつれて、減っていることがわかります。 従業員規模が小さい企業ではDXへの取り組みが進んでいない、取り組んでいたとしても全社戦略として取り組めていないことがわかります。 業種別に見ると、DXに取り組んでいる割合が高いのは「金融業、保険業」83.7%割合が低いのは「サービス業」55.4%となっています。 製造業に関しては、全社戦略に基づきDXに取り組んでいる企業56.5%(2021年は45.3%)。 全社戦略ではないがDXに取り組んでいる企業が14.7%(同13.6%)。 合わせると71.2%(同58.9%)となり、何らかの形DXに取り組んでいる企業が70%を超えています。 2.そもそも組織のDXとは 70%と高い数値は出ていますが、新製品・サービスの創出、顧客価値創出やビジネスモデルの変革といったトランスフォーメーションのレベルの成果ではなく、アナログ・物理データのデジタル化(デジタイゼーション)や業務の効率化による生産性の向上(デジタライゼーション)で数値が高くなっているように感じます。 本来の目的「X=変革」で成果を出せている企業は、非常に少ないのではないでしょうか。 そもそも組織のDXとは、その組織の経営の問題であり、デジタルはその経営変革の重要なリソースでしかありません。 経営者自身がデジタルの意味を率先して理解し、自分は何のため誰のためにビジネスをしているかという覚悟とビジョンを提示し、DX推進のリーダーシップを発揮することが何よりも大切です。 そのうえで、そのビジョンを実現するために、「顧客志向」でビジネス価値をできるだけ直接的に届けられるようにデジタルの力で組織を変えていくこと、そのためにはメンバーも問題を発見し自ら動けるようにマインドを変えていくこと、顧客と直接つながるためのデータのしくみを整備していくこと、それを実現するためにIoTやAIやアジャイル開発などがあるのです。 3.まとめ 今回のコラムでは『DX白書2023』について、簡単ではありますが述べさせて頂きました。 上記した通り、製造業に於いては、アナログ・物理データのデジタル化や業務の効率化による生産性の向上が、DXの中心になっていると思います。 DXに取り組みたい、何か始めればよいか分からない等ございましたら、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   【製造業】経営者向け!!工場の協働ロボット活用成功事例集 ▼事例レポート無料ダウンロードお申し込みはこちら▼ 中小製造業のロボット活用は協働ロボットが主流になる! 中小製造業が実践すべき協働ロボット活用のポイントと具体的な方法を解説! さらに、実際の中小製造業における協働ロボット活用成功事例をこの1冊にまとめました! https://www.funaisoken.co.jp/dl-contents/jy-core-system_S045   ■関連するセミナーのご案内 多品種少量生産の塗装&外観検査工程ロボット活用!社長セミナー 「多品種少量生産の塗装加工業の社長が取り組むべきロボット戦略」 ロボットによる自動塗装で人手を増やさずに生産性を上げる! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100495 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100495

【製造業】生産管理の基本とポイント

2023.04.17

1.生産管理の基本とポイント 今回は、「生産管理の基本と押さえるべきポイント」というテーマについてお伝えさせていただきます。 生産管理の業務とは、どのような活動でしょうか? 当たり前すぎて・・・という意見もありますが新年度に入り新たに生産管理の業務を担当する人向けに改めて 「生産管理」の基本を解説いたします。 また、昨今は製造業のDX化もポピュラーな言葉になってきましたが、まずはこの根本的な理解を持つことが 前提知識として重要なポイントとなります。 まず、「生産管理」とはモノづくりの会社(主に製造業)において生産活動を業務し管理することと位置付けられます。 自社で製造した製品を売上げ収益とする場合、何かしらの管理が必須となります。 製造活動において最も重要なポイントは、「より良い製品」を「いかに安く」「安定的にかつ納期通り納める」 ことに他なりません。 つまりは、 ①品質(Quality) ②コスト(Cost) ③納期(Delivery) これこそが生産管理の目的でかつ重要なポイントとなります。 生産管理は社内の位置づけとして製造の司令塔であり現場をコントロールする重要なポジションになります。 また、従来の手順や手法にとらわれず、工場全体の意識向上に向けた施策を実行する部署としての生産管理の考え方をお伝えいたします。 まず、①品質(Quality) ②コスト(Cost) ③納期(Delivery)つまりは「QCD」について、どれか1つでも欠けたり、精度が低下した場合、会社にとって大きな経営リスクが発生しますので、まずは要点を押さえておきましょう。 本コラムではQCDに関し1つ1つポイントを掘り下げて考えてみます。 2.品質(Quality) まず品質の定義として、社内で設計された製品を設計通りに製造しお客様に提供される製品の品質のことで、要求品質を満足する必要があります。 つまりは「設計品質」=「製造品質」と定義できます。 この品質においては不適合の製品を世の中に万一流出してしまった場合、単なる不良品として再製作だけにとどまらず、不具合内容によっては事故や訴訟問題に発展してしまう可能性があります。 そうなった場合、会社にとって大きな信頼と売上と顧客を失うことになり得る可能性があります。 こうした事態を回避し顧客満足度を高めるには、商品・サービスの品質向上に勤めることが大切です。 そのための品質の改善ポイントを列記します。 (ポイント1)5Sの運用・活動維持 ⇒整理・整頓・清掃・清潔・しつけ (ポイント2)4Mの管理・メンテナンス ⇒人(Man)、機械(Machine)、材料(Material)、方法(Method) (ポイント3)DX化(デジタルトランスフォーメーション)による実績収集・分析・活動記録 (ポイント4)手順書の整備・業務標準化 ⇒作業標準、教育、社内会議による情報共有 まとめとして、製造業において品質管理は、顧客からの信頼性を高めるために重要なポイントになりますので 以上の点を考慮し地道な品質活動を維持継続していくことが大切です。 3.コスト(Cost) コストとは、製品を製造する際にかかった費用のことを指します。 製造原価は、直接製造に関係した「直接費」と間接的に関係した「間接費」に分類され、さらにその費用の目的に応じて「材料費」「労務費」「経費」の3種類に分けられます。   それらの中で、製品の製造に直接関係しない間接的な費用は削減しやすいといえます。 たとえば、製造原価に当たる原材料費は容易に削減することはできませんが、光熱費について、照明を使っていない時はこまめに切る等ルールづくりをすれば、比較的簡単に電気代を削減できるという例になります。 また、費用削減におけるポイントを5つ挙げてみます。   (ポイント1)必要な投資まで削らない(逆効果もあり得る) (ポイント2)コスト削減に関して高すぎる目標や厳しすぎるルールを設定しない (ポイント3)社内の協力体制づくりに力を入れる (ポイント4)5S活動で日々の職場環境を整える (ポイント5)現状の経費や労務費を正確に把握する 上記のポイントを押さえた上で、適切な計画策定とその後の効果測定により長期にわたるコスト削減が期待できると言えます。 4.納期(Delivery) "納期とは「納入期限」の略語で、発注側からの依頼内容に則って受注側が納品物を受け渡す期日を指します。 そもそも納期を守れない企業が市場でどう評価されるかは言うまでもないでしょう。 納期遅延の主な原因として、下記の5つを代表例があります。  (原因1)生産計画のムリな日程・精度の低い計画の影響 (原因2)生産するための材料・部品等の在庫不足 (原因3)製造指示・管理不足の影響 (原因4)製造する人員リソース不足 (原因5)生産設備のトラブル・故障の発生   これらを解決するための施策として、代表的な5つの施策を挙げてみます。 (施策1)無駄な作業や工程の省力化による生産リードタイムの短縮 (施策2)現場の進捗見える化(柔軟な工程変更にも対応) (施策3)営業・製造部門間でのコミュニケーション強化(顧客動向・需要予測含む) (施策4)最適な生産計画の策定(現場の状況や生産性実績の反映) (施策5)スケジュールシステムや自動化設備による作業効率化 これらの観点で最適なリードタイム(生産・調達・出荷)を設定し管理することが重要なポイントとなります。 5.まとめ 「生産管理」とは製造業において生産活動を業務し管理することと位置付けられます。 製造活動において最も重要なポイントは、「より良い製品」を「いかに安く」「安定的にかつ納期通り納める」 ことに他なりません。つまりは、 ①品質(Quality) ②コスト(Cost) ③納期(Delivery) これこそが生産管理の目的でかつ重要なポイントとなります。   基幹システム活用2024年時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 中堅中小製造業におけるBI活用の位置づけと実際のBI活用事例をこの1冊にまとめました。 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 https://www.funaisoken.co.jp/dl-contents/jy-core-system_S045   ■関連するセミナーのご案内 「多品種少量生産機械加工業の為の原価改善!」 社長セミナー 生産管理&原価管理を徹底見直し!原価率削減!粗利改善!儲け改善! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/099993 ■開催内容 材料費高騰対策!儲けの改善の仕組み導入成功編 機械加工業における生産管理・原価管理業務の課題 生産管理原価管理システムの導入失敗例 成功する生産管理原価管理システムの業務改善手順と成功する具体的導入プロセス 個別製品原価、得意先別製品原価、工程別原価をデータ化した事例紹介 生産管理原価管理システム+BIツールで経営・現場が必要なデータを見える化する具体的方法 生産管理原価管理システムの導入・活用で個別原価管理を安価で成功させるためのベンダー選び ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/06/06 (火) 13:00~15:00 2023/06/08 (木) 13:00~15:00 2023/06/13 (火) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/099993 いつも当コラムをご愛読いただきありがとうございます。 1.生産管理の基本とポイント 今回は、「生産管理の基本と押さえるべきポイント」というテーマについてお伝えさせていただきます。 生産管理の業務とは、どのような活動でしょうか? 当たり前すぎて・・・という意見もありますが新年度に入り新たに生産管理の業務を担当する人向けに改めて 「生産管理」の基本を解説いたします。 また、昨今は製造業のDX化もポピュラーな言葉になってきましたが、まずはこの根本的な理解を持つことが 前提知識として重要なポイントとなります。 まず、「生産管理」とはモノづくりの会社(主に製造業)において生産活動を業務し管理することと位置付けられます。 自社で製造した製品を売上げ収益とする場合、何かしらの管理が必須となります。 製造活動において最も重要なポイントは、「より良い製品」を「いかに安く」「安定的にかつ納期通り納める」 ことに他なりません。 つまりは、 ①品質(Quality) ②コスト(Cost) ③納期(Delivery) これこそが生産管理の目的でかつ重要なポイントとなります。 生産管理は社内の位置づけとして製造の司令塔であり現場をコントロールする重要なポジションになります。 また、従来の手順や手法にとらわれず、工場全体の意識向上に向けた施策を実行する部署としての生産管理の考え方をお伝えいたします。 まず、①品質(Quality) ②コスト(Cost) ③納期(Delivery)つまりは「QCD」について、どれか1つでも欠けたり、精度が低下した場合、会社にとって大きな経営リスクが発生しますので、まずは要点を押さえておきましょう。 本コラムではQCDに関し1つ1つポイントを掘り下げて考えてみます。 2.品質(Quality) まず品質の定義として、社内で設計された製品を設計通りに製造しお客様に提供される製品の品質のことで、要求品質を満足する必要があります。 つまりは「設計品質」=「製造品質」と定義できます。 この品質においては不適合の製品を世の中に万一流出してしまった場合、単なる不良品として再製作だけにとどまらず、不具合内容によっては事故や訴訟問題に発展してしまう可能性があります。 そうなった場合、会社にとって大きな信頼と売上と顧客を失うことになり得る可能性があります。 こうした事態を回避し顧客満足度を高めるには、商品・サービスの品質向上に勤めることが大切です。 そのための品質の改善ポイントを列記します。 (ポイント1)5Sの運用・活動維持 ⇒整理・整頓・清掃・清潔・しつけ (ポイント2)4Mの管理・メンテナンス ⇒人(Man)、機械(Machine)、材料(Material)、方法(Method) (ポイント3)DX化(デジタルトランスフォーメーション)による実績収集・分析・活動記録 (ポイント4)手順書の整備・業務標準化 ⇒作業標準、教育、社内会議による情報共有 まとめとして、製造業において品質管理は、顧客からの信頼性を高めるために重要なポイントになりますので 以上の点を考慮し地道な品質活動を維持継続していくことが大切です。 3.コスト(Cost) コストとは、製品を製造する際にかかった費用のことを指します。 製造原価は、直接製造に関係した「直接費」と間接的に関係した「間接費」に分類され、さらにその費用の目的に応じて「材料費」「労務費」「経費」の3種類に分けられます。   それらの中で、製品の製造に直接関係しない間接的な費用は削減しやすいといえます。 たとえば、製造原価に当たる原材料費は容易に削減することはできませんが、光熱費について、照明を使っていない時はこまめに切る等ルールづくりをすれば、比較的簡単に電気代を削減できるという例になります。 また、費用削減におけるポイントを5つ挙げてみます。   (ポイント1)必要な投資まで削らない(逆効果もあり得る) (ポイント2)コスト削減に関して高すぎる目標や厳しすぎるルールを設定しない (ポイント3)社内の協力体制づくりに力を入れる (ポイント4)5S活動で日々の職場環境を整える (ポイント5)現状の経費や労務費を正確に把握する 上記のポイントを押さえた上で、適切な計画策定とその後の効果測定により長期にわたるコスト削減が期待できると言えます。 4.納期(Delivery) "納期とは「納入期限」の略語で、発注側からの依頼内容に則って受注側が納品物を受け渡す期日を指します。 そもそも納期を守れない企業が市場でどう評価されるかは言うまでもないでしょう。 納期遅延の主な原因として、下記の5つを代表例があります。  (原因1)生産計画のムリな日程・精度の低い計画の影響 (原因2)生産するための材料・部品等の在庫不足 (原因3)製造指示・管理不足の影響 (原因4)製造する人員リソース不足 (原因5)生産設備のトラブル・故障の発生   これらを解決するための施策として、代表的な5つの施策を挙げてみます。 (施策1)無駄な作業や工程の省力化による生産リードタイムの短縮 (施策2)現場の進捗見える化(柔軟な工程変更にも対応) (施策3)営業・製造部門間でのコミュニケーション強化(顧客動向・需要予測含む) (施策4)最適な生産計画の策定(現場の状況や生産性実績の反映) (施策5)スケジュールシステムや自動化設備による作業効率化 これらの観点で最適なリードタイム(生産・調達・出荷)を設定し管理することが重要なポイントとなります。 5.まとめ 「生産管理」とは製造業において生産活動を業務し管理することと位置付けられます。 製造活動において最も重要なポイントは、「より良い製品」を「いかに安く」「安定的にかつ納期通り納める」 ことに他なりません。つまりは、 ①品質(Quality) ②コスト(Cost) ③納期(Delivery) これこそが生産管理の目的でかつ重要なポイントとなります。   基幹システム活用2024年時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 中堅中小製造業におけるBI活用の位置づけと実際のBI活用事例をこの1冊にまとめました。 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 https://www.funaisoken.co.jp/dl-contents/jy-core-system_S045   ■関連するセミナーのご案内 「多品種少量生産機械加工業の為の原価改善!」 社長セミナー 生産管理&原価管理を徹底見直し!原価率削減!粗利改善!儲け改善! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/099993 ■開催内容 材料費高騰対策!儲けの改善の仕組み導入成功編 機械加工業における生産管理・原価管理業務の課題 生産管理原価管理システムの導入失敗例 成功する生産管理原価管理システムの業務改善手順と成功する具体的導入プロセス 個別製品原価、得意先別製品原価、工程別原価をデータ化した事例紹介 生産管理原価管理システム+BIツールで経営・現場が必要なデータを見える化する具体的方法 生産管理原価管理システムの導入・活用で個別原価管理を安価で成功させるためのベンダー選び ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/06/06 (火) 13:00~15:00 2023/06/08 (木) 13:00~15:00 2023/06/13 (火) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/099993

「社長の時間を生み出す」ためのAI活用

2023.04.11

1.社長の生産性アップに直結!見積もり工程のAI活用事例とは? 【AI導入企業様 サマリー】 ・従業員数:約50名 ・業種:建築用金属製品製造業 ・2DCADデータを用いた見積もりAIシステムを導入 ・社長自ら手掛けていた見積もり業務の「標準化・脱属人化・技術継承」を推進 今回ご紹介するAI導入企業様では、 見積もりAIシステムの導入を進めています。 この見積もりAIシステムは、 ①新規の見積もり作成の際に、参考となる過去の図面データを探すのに時間がかかる ②参考となる過去の図面データを探す工程が特に属人化しており、熟練者しか対応できない ③熟練者が見積もり業務以外の仕事に時間を割くことが難しい 等の「見積もり業務」に関する 課題解決をサポートするためのシステムです。 こちらの企業様では見積もりAIシステムの導入を通じて、 ①新規の見積もり作成の際に必要な「過去の参考図面データ」を探すスピードが速くなり、見積もり作成時間を大幅に短縮することができた ②属人的な見積もり作成ノウハウを標準化し、熟練者以外の社員でも見積もり業務に従事することができるようになった ③社長自ら従事していた見積もり業務の時間を浮かせ、空いた時間で社長が別の高付加価値業務へ取り組むことができるようになった 等の導入効果を得ることができました。 2.AI活用を通じて「社長の時間の使い方」を変えていく AI活用の話題となると、 既存業務を「より楽に」できるようになる(=効率化) 既存業務を「より少ない人数で」できるようになる(=省人化) という主旨の話が先行しがちですが、今回ご紹介した事例の「より本質的なポイント」は単なる「効率化・省人化」の実現だけでなく、AI導入を通じて浮かせることができた社長の時間を「より高付加価値な業務」へ投資することが可能となったつまり、「社長の時間の使い方改革」を実現できたという点が、「より本質的なポイント」となります。 AI活用を通じて「社長の時間の使い方」を変えていくことで、 経営方針の策定(会社の方向付け) 設備計画の構想 その他の意思決定 等のような、「本当に社長にしかできない仕事」に社長が時間を使えるようになっていきます。 今回は見積もり業務を例にお伝えさせていただきましたが、読者の皆様の会社でも、「社長自ら従事している“属人化業務”」が存在していないでしょうか? 本コラムが読者の社長の皆様の「仕事における時間の使い方」について、現状を振り返るきっかけとなれば幸いです。 今回ご紹介した事例の詳細についてご興味のある方は、是非お気軽にお問い合わせください。   積算・見積業務を効率化!AI活用で働き方改革 ▼事例レポート無料ダウンロードお申し込みはこちら▼ AIを活用し「積算・見積もりのドンブリ勘定」からの脱却を実現! 1、AI活用を通じた「積算・見積もり業務」の標準化・脱属人化・技術継承最新事例サマリー 2、積算・見積もりAIシステムのポイント① 3、積算・見積もりAIシステムのポイント② 4、積算・見積もりAIシステムのポイント③ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_00702   ■関連するセミナーのご案内 多品種少量生産板金加工業の為の見積もりAI!社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100000 ■開催内容 3D-CADデータを用いた高精度の類似検索!従業員数25名の工業用模型製造業におけるAI活用最新事例 2D-CAD図面とPDF図面を用いた見積もりAIシステムを導入!従業員数51名の板金加工業におけるAI活用最新事例 AI活用戦略講座編 「板金加工業経営者が取り組むべきAI活用戦略」 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/06/14 (水) 13:00~15:00 2023/06/16 (金) 13:00~15:00 2023/06/21 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100000 いつも当コラムをご愛読いただきありがとうございます。 1.社長の生産性アップに直結!見積もり工程のAI活用事例とは? 【AI導入企業様 サマリー】 ・従業員数:約50名 ・業種:建築用金属製品製造業 ・2DCADデータを用いた見積もりAIシステムを導入 ・社長自ら手掛けていた見積もり業務の「標準化・脱属人化・技術継承」を推進 今回ご紹介するAI導入企業様では、 見積もりAIシステムの導入を進めています。 この見積もりAIシステムは、 ①新規の見積もり作成の際に、参考となる過去の図面データを探すのに時間がかかる ②参考となる過去の図面データを探す工程が特に属人化しており、熟練者しか対応できない ③熟練者が見積もり業務以外の仕事に時間を割くことが難しい 等の「見積もり業務」に関する 課題解決をサポートするためのシステムです。 こちらの企業様では見積もりAIシステムの導入を通じて、 ①新規の見積もり作成の際に必要な「過去の参考図面データ」を探すスピードが速くなり、見積もり作成時間を大幅に短縮することができた ②属人的な見積もり作成ノウハウを標準化し、熟練者以外の社員でも見積もり業務に従事することができるようになった ③社長自ら従事していた見積もり業務の時間を浮かせ、空いた時間で社長が別の高付加価値業務へ取り組むことができるようになった 等の導入効果を得ることができました。 2.AI活用を通じて「社長の時間の使い方」を変えていく AI活用の話題となると、 既存業務を「より楽に」できるようになる(=効率化) 既存業務を「より少ない人数で」できるようになる(=省人化) という主旨の話が先行しがちですが、今回ご紹介した事例の「より本質的なポイント」は単なる「効率化・省人化」の実現だけでなく、AI導入を通じて浮かせることができた社長の時間を「より高付加価値な業務」へ投資することが可能となったつまり、「社長の時間の使い方改革」を実現できたという点が、「より本質的なポイント」となります。 AI活用を通じて「社長の時間の使い方」を変えていくことで、 経営方針の策定(会社の方向付け) 設備計画の構想 その他の意思決定 等のような、「本当に社長にしかできない仕事」に社長が時間を使えるようになっていきます。 今回は見積もり業務を例にお伝えさせていただきましたが、読者の皆様の会社でも、「社長自ら従事している“属人化業務”」が存在していないでしょうか? 本コラムが読者の社長の皆様の「仕事における時間の使い方」について、現状を振り返るきっかけとなれば幸いです。 今回ご紹介した事例の詳細についてご興味のある方は、是非お気軽にお問い合わせください。   積算・見積業務を効率化!AI活用で働き方改革 ▼事例レポート無料ダウンロードお申し込みはこちら▼ AIを活用し「積算・見積もりのドンブリ勘定」からの脱却を実現! 1、AI活用を通じた「積算・見積もり業務」の標準化・脱属人化・技術継承最新事例サマリー 2、積算・見積もりAIシステムのポイント① 3、積算・見積もりAIシステムのポイント② 4、積算・見積もりAIシステムのポイント③ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_00702   ■関連するセミナーのご案内 多品種少量生産板金加工業の為の見積もりAI!社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100000 ■開催内容 3D-CADデータを用いた高精度の類似検索!従業員数25名の工業用模型製造業におけるAI活用最新事例 2D-CAD図面とPDF図面を用いた見積もりAIシステムを導入!従業員数51名の板金加工業におけるAI活用最新事例 AI活用戦略講座編 「板金加工業経営者が取り組むべきAI活用戦略」 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/06/14 (水) 13:00~15:00 2023/06/16 (金) 13:00~15:00 2023/06/21 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100000

中小製造業がやるべきDX成功事例活用術

2023.04.07

1.はじめに 本コラムでは、他社(特に大手企業)が先行し成功っている事例を参考に自社の事業を拡大する方法、考え方について説明させていただきます。様々な企業の設備・システムの導入事例を見聞きし、自社でも実現したいとお考えの方は多くいらっしゃいますが、なかなか実現に至らないことが多いです。それはなぜなのでしょうか?その原因と解決策について本コラムを読んでいただければ、答えの一つを知ることが出来る内容となっています。 大手企業の事例を参考にすることは、中小企業にとって非常に有益なことです。大手企業は、多くの場合、成功しているビジネスモデルを持っているため、事例を研究することで、その成功の秘訣を知ることができます。以下では、大手企業の事例を活かせない原因と対策、活かす方法について説明します 2.他社の事例を自社で実現できない理由 中小企業が大手企業の事例を真似できない理由は以下の通りです。 ①リソースの差 ②人材面の問題 ③組織の規模の差 ④市場の違い ⑤経営方針の違い 上記のような理由から、無意識的に「どうせ、うちでは無理だな」と思ってしまう経営者や社員の方が多いかと思います。ですが、成功事例を研究して、自社との差を比較し、過不足を明確にすることが出来れば、その事例を通して目指すゴールと改善箇所が見えてきて、取るべき行動計画を立てることができます。以降では、各理由について説明を行います ①リソースの差 大手企業は、多くの場合、資金や人材などのリソースが豊富であり、多額の予算を投じた広告やマーケティングキャンペーンを行うことができます。一方、中小企業は、予算や人材が限られており、同じような大規模な活動を行うことができない場合があります。 ②人材面の問題 大手企業は、多くの人材を抱えており、そのうちの一部は専門的な知識やスキルを持っていることが多いです。一方で、中小企業は、専門的な知識やスキルを持った専門家を雇用、育成をすることが難しいことがあります。 ③組織の規模の差 大手企業は、組織が大規模であり、専門部署が設置されていることが多く、業務の分業が進んでいるため、専門的な知識や経験を持った専門家が多数在籍しています。一方、中小企業は、組織が小規模であるため、同様の専門家を維持することが難しい場合があります。 ④市場の違い 大手企業は、グローバルな市場を持っている場合が多く、多様な文化や言語、消費者のニーズを把握していることがあります。一方、中小企業は、市場が限定されている場合が多く、市場環境や顧客ニーズが大手企業と異なる場合があります。 ⑤経営方針の違い 大手企業は、長期的なビジョンを持ち、多様な経営方針を立て、企業価値を高めることを目指しています。一方、中小企業は、短期的な経営方針を立てることが多く、業績の向上を目的としている場合があります。 以上のように、中小企業が大手企業の事例を真似できない理由は、資源や組織規模、市場、経営方針など、さまざまな要因によるものがあります。しかし、中小企業は自社の特性や強み弱みを理解し、大手企業の事例を研究し、その成功要因を解明し、自社の戦略に組み込むことが重要です。 3.大手企業の事例の活かし方 大手企業の事例は、中小企業にとっても有益な情報源となります。その中でも、成功している大手企業の事例は、中小企業にとって参考になる点が多いです。ここでは、大手企業の事例を中小企業が活かす方法をいくつかご紹介します。 ①顧客ニーズの把握と対応 大手企業は、市場の大部分を占めているため、多様な顧客ニーズを把握しています。中小企業も、自社の顧客ニーズを把握し、的確に対応することが重要です。大手企業の顧客ニーズへの対応を参考にし、自社に適した顧客対応策を立てることができます。 ②マーケティング戦略の改善 大手企業は、広告やマーケティング戦略に多額の予算を投じています。中小企業も、限られた予算の中で最大限に効果を出すため、マーケティング戦略の改善が必要です。大手企業の成功事例を参考にし、自社に適したマーケティング戦略を考えることができます。 ③新しい技術やビジネスモデルの導入 大手企業は、新しい技術やビジネスモデルを積極的に導入し、業務の効率化や収益の増加を図っています。中小企業も、大手企業の事例と自社の業務プロセスを比較検討し、新しい技術やビジネスモデルを計画的に導入することで、業務の改善や収益の増加を図ることができます。 ④グローバル展開の戦略 大手企業は、グローバルな市場に進出することで、新しいビジネスチャンスを生み出しています。中小企業も、海外市場に進出することで、自社のビジネスを拡大することができます。大手企業のグローバル展開戦略を参考にし、自社のグローバル展開戦略を立てることができます。 4.まとめ 今回のコラムでは、他社の成功事例を参考にし、自社で活かす方法・考え方について説明させていただきました。今回の紹介した内容をきっかけに、自社の成長戦略の立案・実行の取り組みを開始していただければ幸いです。 上記内容について、より具体的に詳細をお知りになりたい場合や成長戦略の立案や設備・システム導入の計画立案・実行支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 私どもは、会社の中に入り込み、計画を立案実行し定着・継続的な改善まで支援させて頂き、経営指標を改善することがゴールですので、最後まで伴走させていただきます。 最後までお読みいただきありがとうございました。   基幹システム活用2024年時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 中堅中小製造業におけるBI活用の位置づけと実際のBI活用事例をこの1冊にまとめました。 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 https://www.funaisoken.co.jp/dl-contents/jy-core-system_S045   ■関連するセミナーのご案内 設計開発型メーカーの為の基幹システム再構築戦略!社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/097971 ■開催内容 設計開発型メーカーのDX化のポイント 設計開発型メーカーの為のDX化の進め方 設計開発型メーカーの社長の為のDX経営戦略 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/05/16 (火) 13:00~15:00 2023/05/23 (火) 13:00~15:00 2023/05/24 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/097971 いつも当コラムをご愛読いただきありがとうございます。 1.はじめに 本コラムでは、他社(特に大手企業)が先行し成功っている事例を参考に自社の事業を拡大する方法、考え方について説明させていただきます。様々な企業の設備・システムの導入事例を見聞きし、自社でも実現したいとお考えの方は多くいらっしゃいますが、なかなか実現に至らないことが多いです。それはなぜなのでしょうか?その原因と解決策について本コラムを読んでいただければ、答えの一つを知ることが出来る内容となっています。 大手企業の事例を参考にすることは、中小企業にとって非常に有益なことです。大手企業は、多くの場合、成功しているビジネスモデルを持っているため、事例を研究することで、その成功の秘訣を知ることができます。以下では、大手企業の事例を活かせない原因と対策、活かす方法について説明します 2.他社の事例を自社で実現できない理由 中小企業が大手企業の事例を真似できない理由は以下の通りです。 ①リソースの差 ②人材面の問題 ③組織の規模の差 ④市場の違い ⑤経営方針の違い 上記のような理由から、無意識的に「どうせ、うちでは無理だな」と思ってしまう経営者や社員の方が多いかと思います。ですが、成功事例を研究して、自社との差を比較し、過不足を明確にすることが出来れば、その事例を通して目指すゴールと改善箇所が見えてきて、取るべき行動計画を立てることができます。以降では、各理由について説明を行います ①リソースの差 大手企業は、多くの場合、資金や人材などのリソースが豊富であり、多額の予算を投じた広告やマーケティングキャンペーンを行うことができます。一方、中小企業は、予算や人材が限られており、同じような大規模な活動を行うことができない場合があります。 ②人材面の問題 大手企業は、多くの人材を抱えており、そのうちの一部は専門的な知識やスキルを持っていることが多いです。一方で、中小企業は、専門的な知識やスキルを持った専門家を雇用、育成をすることが難しいことがあります。 ③組織の規模の差 大手企業は、組織が大規模であり、専門部署が設置されていることが多く、業務の分業が進んでいるため、専門的な知識や経験を持った専門家が多数在籍しています。一方、中小企業は、組織が小規模であるため、同様の専門家を維持することが難しい場合があります。 ④市場の違い 大手企業は、グローバルな市場を持っている場合が多く、多様な文化や言語、消費者のニーズを把握していることがあります。一方、中小企業は、市場が限定されている場合が多く、市場環境や顧客ニーズが大手企業と異なる場合があります。 ⑤経営方針の違い 大手企業は、長期的なビジョンを持ち、多様な経営方針を立て、企業価値を高めることを目指しています。一方、中小企業は、短期的な経営方針を立てることが多く、業績の向上を目的としている場合があります。 以上のように、中小企業が大手企業の事例を真似できない理由は、資源や組織規模、市場、経営方針など、さまざまな要因によるものがあります。しかし、中小企業は自社の特性や強み弱みを理解し、大手企業の事例を研究し、その成功要因を解明し、自社の戦略に組み込むことが重要です。 3.大手企業の事例の活かし方 大手企業の事例は、中小企業にとっても有益な情報源となります。その中でも、成功している大手企業の事例は、中小企業にとって参考になる点が多いです。ここでは、大手企業の事例を中小企業が活かす方法をいくつかご紹介します。 ①顧客ニーズの把握と対応 大手企業は、市場の大部分を占めているため、多様な顧客ニーズを把握しています。中小企業も、自社の顧客ニーズを把握し、的確に対応することが重要です。大手企業の顧客ニーズへの対応を参考にし、自社に適した顧客対応策を立てることができます。 ②マーケティング戦略の改善 大手企業は、広告やマーケティング戦略に多額の予算を投じています。中小企業も、限られた予算の中で最大限に効果を出すため、マーケティング戦略の改善が必要です。大手企業の成功事例を参考にし、自社に適したマーケティング戦略を考えることができます。 ③新しい技術やビジネスモデルの導入 大手企業は、新しい技術やビジネスモデルを積極的に導入し、業務の効率化や収益の増加を図っています。中小企業も、大手企業の事例と自社の業務プロセスを比較検討し、新しい技術やビジネスモデルを計画的に導入することで、業務の改善や収益の増加を図ることができます。 ④グローバル展開の戦略 大手企業は、グローバルな市場に進出することで、新しいビジネスチャンスを生み出しています。中小企業も、海外市場に進出することで、自社のビジネスを拡大することができます。大手企業のグローバル展開戦略を参考にし、自社のグローバル展開戦略を立てることができます。 4.まとめ 今回のコラムでは、他社の成功事例を参考にし、自社で活かす方法・考え方について説明させていただきました。今回の紹介した内容をきっかけに、自社の成長戦略の立案・実行の取り組みを開始していただければ幸いです。 上記内容について、より具体的に詳細をお知りになりたい場合や成長戦略の立案や設備・システム導入の計画立案・実行支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 私どもは、会社の中に入り込み、計画を立案実行し定着・継続的な改善まで支援させて頂き、経営指標を改善することがゴールですので、最後まで伴走させていただきます。 最後までお読みいただきありがとうございました。   基幹システム活用2024年時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 中堅中小製造業におけるBI活用の位置づけと実際のBI活用事例をこの1冊にまとめました。 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 https://www.funaisoken.co.jp/dl-contents/jy-core-system_S045   ■関連するセミナーのご案内 設計開発型メーカーの為の基幹システム再構築戦略!社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/097971 ■開催内容 設計開発型メーカーのDX化のポイント 設計開発型メーカーの為のDX化の進め方 設計開発型メーカーの社長の為のDX経営戦略 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/05/16 (火) 13:00~15:00 2023/05/23 (火) 13:00~15:00 2023/05/24 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/097971

中堅・中小製造業の画像検査装置導入のコツ ~画像検査はここまで来ている。最新情報~

2023.04.04

本コラムでは、中堅・中小製造業の企業における画像検査の最新情報について、何がどの様に画像検査が進化しているかを分かりやすく説明をさせていただきます。 1.画像検査の最新情報 AIを活用した高速・高精度の画像解析技術が発展しています。画像処理検査装置は、AIによる画像解析技術を取り入れることで、より高速かつ高精度な検査を実現できるようになっています。 3D画像処理技術の進化により、より精密な形状・寸法検査が可能になっています。これにより、従来の2D画像処理技術では検査が困難だった微細な形状や、曲面部分の検査も可能になりました。 検査対象物に対する非接触・非破壊検査技術の進化により、より広範な検査対象物に対応できるようになっています。これにより、例えば、製造ライン上での自動車部品の検査や、医療現場での非接触検査が可能になっています。 IoT技術との連携により、リアルタイムのデータ収集・分析が可能になっています。これにより、製造現場や物流現場などでの、品質管理やトラブル予知・予防が容易になりました。 クラウド技術の活用により、画像処理検査装置の遠隔監視・遠隔操作が可能になっています。これにより、専門知識を持つ技術者が少ない現場でも、遠隔でサポートを受けながら検査作業を行うことができます。 上記の5つの列挙項目から分かる様に様々な新技術と融合して画像検査が新しく進んでいる事が分かります。本コラムでは製造業から見た視点でこれらの新しい画像検査の活用方法を説明させて頂きます。 2.製造業目線で見る、画像検査 2.1 AI画像解析技術で高速かつ高精度な検査を実現: 最新のAI画像処理技術では複数カメラの画像をAIで総合的に判断出来ます。以前の個々のカメラ画像ではAIでも判断しにくかった様な判定でも、複数の撮影方向から撮影したカメラ画像を総合的に判断出来たり、カメラ以外のセンサー情報と組み合わせて早期に不良品が生産されることを予見したりといった事です。 2.2 3D画像処理技術進化による精密な形状・寸法検査が可能: 高度な3Dセンサー、時間軸を考慮した3D画像処理、点群データの高速処理化により、より精密な3次元形状の計測が出来ます。また、製品の時間変化や動的な物体の形状や寸法の検査が行える様になっています。それにより製品に外部から力を加えた場合の変形や破損などもシミュレーション出来ます。 2.3 広範な検査対象物に対応: 大きな製品(船舶や航空機、車両など)の外観検査や計測がAIを使って総合的に処理する事が出来る様になりました。 自動で位置補正やデータ補正する事が出来る様になり、他のセンサー(レーザー距離計や3Dセンサー)などの情報も組み合わせて、検査、計測する事が出来るようになりました。 2.4 IoT技術との連携により、リアルタイムのデータ収集・分析が可能: 画像処理検査で判定された結果はリアルタイムで生産管理システムと連携する事が出来るようになりました。これにより製造状況がリアルタイムで出荷情報と連携する事になり、製造製品の過不足を自動で見極め、自動的に次の生産・製造数を調整する事が出来る様になりました。 2.5 クラウド技術の活用により、画像処理検査装置の遠隔監視・遠隔操作が可能: 以前は工場外から工場内の機器にアクセスする事は、セキュリティ面などを考慮しアクセス出来ませんでした。クラウド技術を使用することで、複数の装置を遠隔で管理することができます。たとえば、画像処理検査装置から撮影されたデータをクラウドにアップロードし、オペレーターが遠隔でそのデータを確認することができます。また、クラウド上に遠隔操作用のインターフェースを設置し、オペレーターが遠隔で画像処理検査装置を操作することもできます。このようなクラウド技術を使用することで、装置の稼働状況や検査結果のデータなどをリアルタイムで把握することができ、運用効率の向上や問題の早期発見・解決などが可能となります。 これらのお話からお客様のご自身の工場が最新に近いと感じされたお客様もあれば、 既に画像検査装置を複数台導入済であっても、最新情報とまでに至っていないと感じられたお客様もあると思います。次は既存の画像処理装置を変えずに、AI(ディープラーニング)を導入するご提案をお話したいと思います。 3.画像処理装置のAI活用 3.1 既存の画像処理検査装置? AIを使用していない昔ながらのルールベース(画像処理命令を組み合わせる)画像処理検査装置の事を言います。 3.2 既存の画像処理検査装置を置き換えない? 既にカメラや照明が製造ラインや製造装置に組み込まれている、固定されている状態でそれらを外す事に現場の作業者もご不安に思われると思います。そこで既存のカメラ、照明、画像処理検査装置をそのままでAIを付加出来れば、性能UPとして考えられると思います。先ずは現場担当者の不安を取り去る事が大切です。 3.3 既存の画像検査装置とどうやって連携するか? 大きく2パターンあります。 一つは既存の画像処理検査装置から撮影画像データをAIへ転送し既存の画像処理検査装置とAIで2重判定させる方法です。導入初期段階ではまだ既存の画像処理検査装置の判定率が高いと思いますが、徐々にAIの方が判定率が高くなります。そうなった時点で既存の画像処理検査装置を撤去しAIのみ入れ替える事が出来ます。 もう一つは既存の画像処理検査装置から出力されるNG信号情報を学習させる事です。ただ単純なOK/NG信号ではなく、各検査命令種別で出た結果信号や処理条件をAIに学習させます。例えば、ブロブ判定処理で2値化閾値と判定結果の面積をAI学習させます。この学習データから不良品が出そうなタイミングをAIが予見する事が出来たりします。それらの学習結果を製造ラインにフィードバックし、不良率を下げる事に繋げる事が可能となります。 最後に、そもそも有効な判定画像が撮れている事が大前提です。カメラやレンズ、画像処理コントローラ、PCベースの画像処理ソフトなどの選定など、撮影角度、撮影に適した搬送など非常に多くの画像検査装置に関連する要素は様々ありますが、高級なカメラ、高級なレンズ、高級な画像処理、高額なAIソフトを使っても、基本となる有効な撮影が出来ていなければ、画像検査としては成り立ちません。 4.まとめ 今回のコラムでは、画像検査装置の導入のコツ=画像検査はここまで来ている。最新情報 について簡単ではありますが説明させていただきました。今回の紹介した内容をご検討頂き、自社での画像検査装置の導入検討や、過去に断念された画像検査装置の導入を再度進めていただければ幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■AI画像検査導入事例解説レポート AIを活用し「積算・見積もりのドンブリ勘定」からの脱却を実現! AI活用を通じて“ベテラン社員の働き方改革”を推進! 積算・見積もり業務の“標準化・脱属人化・技術継承”実践事例とは? ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext06-01-dl.html 収録内容 「人手に頼った目視検査で工数がかかっているので検査を自動化して工数を削減したい!」 「画像検査装置を導入したことが無いがやってみたい!」 「小さな不良なので画像検査が可能なのか分からないからテストしてみたい!」 「人による目視検査で不良品が流出しているので検査精度を上げて不良流出を防ぎたい!」 「検査業務が属人化しているので標準化して誰でも検査が行えるようにしたい!」 本レポートでは、「AI画像検査」にテーマを絞り、具体的な導入方法と成功事例をご紹介いたします。 【①】AI画像検査導入の進め方 ~業務分析、データ収集、作業分析、コスト効果分析、、、~ 【②】AI画像検査導入の具体的手法 ~透明な樹脂成型品の傷、異物を画像検査装置で検出~ 導入の具体的手法を徹底解説!! 【③】補助金を活用した画像検査装置導入成功事例 ●自動車用部品の最終検査工程に検査装置を導入  カメラ・力覚・レーザー変位センサーをロボットハンドに取り付け、検査の自動化を実現 ●ボールペン部品射出成形の検査及び箱詰め工程に検査装置を導入  目視での外観検査工程を、カメラで撮影した画像から検査を行うことで、判定を行う ●AI技術とロボットを用いた多品種油圧機器外観検査の自動化  ロボットで画像センサと照明を操作し、取得した画像をAI技術で判別し、外観検査を自動化   ■機械加工業の為の協働ロボット活用!社長セミナー 協働ロボット活用してロボドリル・NC旋盤・マシニングセンタの夜間稼働!休日稼働!無人稼働! 無料ダウンロードはこちらから https://www.funaisoken.co.jp/seminar/097973 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/05/11 (木) 13:00~15:00 2023/05/17 (水) 13:00~15:00 2023/05/18 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 社員数わずか8名の機械加工会社が協働ロボットの導入に成功し残業・休出を大幅に削減したゲスト事例講座! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/097973 いつも当コラムをご愛読いただきありがとうございます。 本コラムでは、中堅・中小製造業の企業における画像検査の最新情報について、何がどの様に画像検査が進化しているかを分かりやすく説明をさせていただきます。 1.画像検査の最新情報 AIを活用した高速・高精度の画像解析技術が発展しています。画像処理検査装置は、AIによる画像解析技術を取り入れることで、より高速かつ高精度な検査を実現できるようになっています。 3D画像処理技術の進化により、より精密な形状・寸法検査が可能になっています。これにより、従来の2D画像処理技術では検査が困難だった微細な形状や、曲面部分の検査も可能になりました。 検査対象物に対する非接触・非破壊検査技術の進化により、より広範な検査対象物に対応できるようになっています。これにより、例えば、製造ライン上での自動車部品の検査や、医療現場での非接触検査が可能になっています。 IoT技術との連携により、リアルタイムのデータ収集・分析が可能になっています。これにより、製造現場や物流現場などでの、品質管理やトラブル予知・予防が容易になりました。 クラウド技術の活用により、画像処理検査装置の遠隔監視・遠隔操作が可能になっています。これにより、専門知識を持つ技術者が少ない現場でも、遠隔でサポートを受けながら検査作業を行うことができます。 上記の5つの列挙項目から分かる様に様々な新技術と融合して画像検査が新しく進んでいる事が分かります。本コラムでは製造業から見た視点でこれらの新しい画像検査の活用方法を説明させて頂きます。 2.製造業目線で見る、画像検査 2.1 AI画像解析技術で高速かつ高精度な検査を実現: 最新のAI画像処理技術では複数カメラの画像をAIで総合的に判断出来ます。以前の個々のカメラ画像ではAIでも判断しにくかった様な判定でも、複数の撮影方向から撮影したカメラ画像を総合的に判断出来たり、カメラ以外のセンサー情報と組み合わせて早期に不良品が生産されることを予見したりといった事です。 2.2 3D画像処理技術進化による精密な形状・寸法検査が可能: 高度な3Dセンサー、時間軸を考慮した3D画像処理、点群データの高速処理化により、より精密な3次元形状の計測が出来ます。また、製品の時間変化や動的な物体の形状や寸法の検査が行える様になっています。それにより製品に外部から力を加えた場合の変形や破損などもシミュレーション出来ます。 2.3 広範な検査対象物に対応: 大きな製品(船舶や航空機、車両など)の外観検査や計測がAIを使って総合的に処理する事が出来る様になりました。 自動で位置補正やデータ補正する事が出来る様になり、他のセンサー(レーザー距離計や3Dセンサー)などの情報も組み合わせて、検査、計測する事が出来るようになりました。 2.4 IoT技術との連携により、リアルタイムのデータ収集・分析が可能: 画像処理検査で判定された結果はリアルタイムで生産管理システムと連携する事が出来るようになりました。これにより製造状況がリアルタイムで出荷情報と連携する事になり、製造製品の過不足を自動で見極め、自動的に次の生産・製造数を調整する事が出来る様になりました。 2.5 クラウド技術の活用により、画像処理検査装置の遠隔監視・遠隔操作が可能: 以前は工場外から工場内の機器にアクセスする事は、セキュリティ面などを考慮しアクセス出来ませんでした。クラウド技術を使用することで、複数の装置を遠隔で管理することができます。たとえば、画像処理検査装置から撮影されたデータをクラウドにアップロードし、オペレーターが遠隔でそのデータを確認することができます。また、クラウド上に遠隔操作用のインターフェースを設置し、オペレーターが遠隔で画像処理検査装置を操作することもできます。このようなクラウド技術を使用することで、装置の稼働状況や検査結果のデータなどをリアルタイムで把握することができ、運用効率の向上や問題の早期発見・解決などが可能となります。 これらのお話からお客様のご自身の工場が最新に近いと感じされたお客様もあれば、 既に画像検査装置を複数台導入済であっても、最新情報とまでに至っていないと感じられたお客様もあると思います。次は既存の画像処理装置を変えずに、AI(ディープラーニング)を導入するご提案をお話したいと思います。 3.画像処理装置のAI活用 3.1 既存の画像処理検査装置? AIを使用していない昔ながらのルールベース(画像処理命令を組み合わせる)画像処理検査装置の事を言います。 3.2 既存の画像処理検査装置を置き換えない? 既にカメラや照明が製造ラインや製造装置に組み込まれている、固定されている状態でそれらを外す事に現場の作業者もご不安に思われると思います。そこで既存のカメラ、照明、画像処理検査装置をそのままでAIを付加出来れば、性能UPとして考えられると思います。先ずは現場担当者の不安を取り去る事が大切です。 3.3 既存の画像検査装置とどうやって連携するか? 大きく2パターンあります。 一つは既存の画像処理検査装置から撮影画像データをAIへ転送し既存の画像処理検査装置とAIで2重判定させる方法です。導入初期段階ではまだ既存の画像処理検査装置の判定率が高いと思いますが、徐々にAIの方が判定率が高くなります。そうなった時点で既存の画像処理検査装置を撤去しAIのみ入れ替える事が出来ます。 もう一つは既存の画像処理検査装置から出力されるNG信号情報を学習させる事です。ただ単純なOK/NG信号ではなく、各検査命令種別で出た結果信号や処理条件をAIに学習させます。例えば、ブロブ判定処理で2値化閾値と判定結果の面積をAI学習させます。この学習データから不良品が出そうなタイミングをAIが予見する事が出来たりします。それらの学習結果を製造ラインにフィードバックし、不良率を下げる事に繋げる事が可能となります。 最後に、そもそも有効な判定画像が撮れている事が大前提です。カメラやレンズ、画像処理コントローラ、PCベースの画像処理ソフトなどの選定など、撮影角度、撮影に適した搬送など非常に多くの画像検査装置に関連する要素は様々ありますが、高級なカメラ、高級なレンズ、高級な画像処理、高額なAIソフトを使っても、基本となる有効な撮影が出来ていなければ、画像検査としては成り立ちません。 4.まとめ 今回のコラムでは、画像検査装置の導入のコツ=画像検査はここまで来ている。最新情報 について簡単ではありますが説明させていただきました。今回の紹介した内容をご検討頂き、自社での画像検査装置の導入検討や、過去に断念された画像検査装置の導入を再度進めていただければ幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■AI画像検査導入事例解説レポート AIを活用し「積算・見積もりのドンブリ勘定」からの脱却を実現! AI活用を通じて“ベテラン社員の働き方改革”を推進! 積算・見積もり業務の“標準化・脱属人化・技術継承”実践事例とは? ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext06-01-dl.html 収録内容 「人手に頼った目視検査で工数がかかっているので検査を自動化して工数を削減したい!」 「画像検査装置を導入したことが無いがやってみたい!」 「小さな不良なので画像検査が可能なのか分からないからテストしてみたい!」 「人による目視検査で不良品が流出しているので検査精度を上げて不良流出を防ぎたい!」 「検査業務が属人化しているので標準化して誰でも検査が行えるようにしたい!」 本レポートでは、「AI画像検査」にテーマを絞り、具体的な導入方法と成功事例をご紹介いたします。 【①】AI画像検査導入の進め方 ~業務分析、データ収集、作業分析、コスト効果分析、、、~ 【②】AI画像検査導入の具体的手法 ~透明な樹脂成型品の傷、異物を画像検査装置で検出~ 導入の具体的手法を徹底解説!! 【③】補助金を活用した画像検査装置導入成功事例 ●自動車用部品の最終検査工程に検査装置を導入  カメラ・力覚・レーザー変位センサーをロボットハンドに取り付け、検査の自動化を実現 ●ボールペン部品射出成形の検査及び箱詰め工程に検査装置を導入  目視での外観検査工程を、カメラで撮影した画像から検査を行うことで、判定を行う ●AI技術とロボットを用いた多品種油圧機器外観検査の自動化  ロボットで画像センサと照明を操作し、取得した画像をAI技術で判別し、外観検査を自動化   ■機械加工業の為の協働ロボット活用!社長セミナー 協働ロボット活用してロボドリル・NC旋盤・マシニングセンタの夜間稼働!休日稼働!無人稼働! 無料ダウンロードはこちらから https://www.funaisoken.co.jp/seminar/097973 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/05/11 (木) 13:00~15:00 2023/05/17 (水) 13:00~15:00 2023/05/18 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 社員数わずか8名の機械加工会社が協働ロボットの導入に成功し残業・休出を大幅に削減したゲスト事例講座! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/097973

製造業の「現場がついてくる」DXの進め方

2023.04.03

1.再到来したデジタル機運 コロナ禍以降、DXやデジタルを使おうという雰囲気が、社会全体を覆っています。まずはもう一度DXという言葉について、おさらいですが、DXとは「ITテクノロジー(データ)を活用して、社内外に新しい価値やサービスを提供すること」になります。 アナログ作業やブラックボックスが非常多い製造業においても、「流石に乗り遅れることは出来ない」とITテクノロジーを積極的に活用しようという企業も多くなっています。ロボット化、自動化、デジタル化様々な課題に対して施策を検討・実施行っていると思います。 コロナ禍で非接触というものが強制的に行われたので、社会的にもデジタルで非接触ということデジタル作業が進められるわけですが、実は2011年東日本大震災の時も、デジタルで保存した方が良いという動きは行われていました。しかし、残念ながら、そういった活動は長くは続かず、数年かけて下火になっていきました。要は、人間は大きな変化が来ても、喉元すぎれば・・・で、いつの間にか忘れてしまうんですね。 ただ、このコロナの状態は3年以上続いたので、社会に大きなマインドセットをもたらしました。社会全体で「デジタルを使ってアナログ作業を効率化させよう!非効率をもう一度見直そう!」という動きが広く起こっています。 2.DX以前に必要なこと しかし、「デジタル/DXを進めよう!」と思っても、簡単には行かないのが実状です。 順調に取り組みが進んでいる企業もありますが、社長や工場長が旗振りしても、実際に効果的に動けていない企業も非常に多くあります。むしろ、進んでいない企業が非常に多いです。これはなぜでしょうか? デジタル/DXのプロジェクトを始めると、「何のツールを入れようか?」や「ベンダー選定をどこにしようか?」と目が行きがちですが、上手くいかないのは、社長や経営層がこれらツールの話で話が終わると思っているからです。デジタル/DXというものは、「ツールやベンダーの話ではない!」ということを肝に銘じなければなりません。 では、何が必要でしょうか? まず必須で始めなければならないのは、「現状把握」と「仕事の棚卸し」です。 この事柄を紹介する例え話で、江戸時代のものづくりにロボットを導入したら効率がよくなるか?という話があります。 答えは否です。江戸時代の作業にロボットを導入しても効率化されません。これは江戸時代のものづくりには分業という考えがなく、業務の役割が明確にされていない為、そもそもロボットが入れる余地がないのです。 これは昔話のようで、実は今にもつながる話です。「ロボット化する/システムを利用する」というのは、業務を明確にすることが大前提となります。日本の工場が得意な曖昧な作業や暗黙知はロボットやシステムは受け付けてくれません。既存のやり方を全く同じに移行することは不可能なのです。 したがって、デジタル/DXを考えるには、まず、①現状の作業を正確に把握すること②業務を棚卸することのステップが重要となってくるのです。 これらが完了して初めて「何のツール/システム/ベンダーにしようか?」フェーズに移っていくのです。 3.何が良いことがあるの?は明確に! プロジェクトを始める時に、もう一つ重要なことがあります。 それは、「これを達成すると何が良いことがあるのか?」を社員全員に部門や社員のレベルに応じて、視線を落として、きちんと丁寧に、明確に説明することです。これはボトムアップではなくトップダウンで行わなければなりません。これも一度の説明で全員が同じ方向を向けるわけではありません。事あるごとにコミュニケーションを取り、根気強く説明と課題感を共有していき、同じ方角だけでも見られるようになるとよいですね。 とはいえ、プロジェクトを成し遂げるのは平坦な道ではありません。部門間の考え方の違いから、議論が白熱することもあるでしょう。反対意見により挫折することもあるかもしれません。その時に「何が良くなるか?」を全員で共通認識にしておかないと、頑張れる人だけ頑張るような一部の人の活動になってしまいます。そうなってしまったらプロジェクトの成功はありません。「デジタル/DXを進めよう!」ということは、一部の人の話ではないからです。 「社員全員がプロジェクトの意味を理解して同じをゴールに向かって進むこと」が成功する/しないの中では非常に重要な考え方です。 プロジェクトの明確な目的を持ち共有すること、そして、「現状把握」「仕事の棚卸し」をすることから始めることで、うまく進められる可能性は高まっていきます。   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 詳細はYoutubeにて公開しております。 https://youtu.be/H6Vq84C1Z4A https://www.funaisoken.co.jp/dl-contents/jy-ai_S045   ■多品種少量生産機械加工業のAI活用!社長セミナー 従業員30~200名の機械加工業の為の見積もりAI・生産計画AI・原価管理AIの活用! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/04/12 (水) 13:00~15:00 2023/04/17 (月) 13:00~15:00 2023/04/19 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 いつも当コラムをご愛読いただきありがとうございます。 1.再到来したデジタル機運 コロナ禍以降、DXやデジタルを使おうという雰囲気が、社会全体を覆っています。まずはもう一度DXという言葉について、おさらいですが、DXとは「ITテクノロジー(データ)を活用して、社内外に新しい価値やサービスを提供すること」になります。 アナログ作業やブラックボックスが非常多い製造業においても、「流石に乗り遅れることは出来ない」とITテクノロジーを積極的に活用しようという企業も多くなっています。ロボット化、自動化、デジタル化様々な課題に対して施策を検討・実施行っていると思います。 コロナ禍で非接触というものが強制的に行われたので、社会的にもデジタルで非接触ということデジタル作業が進められるわけですが、実は2011年東日本大震災の時も、デジタルで保存した方が良いという動きは行われていました。しかし、残念ながら、そういった活動は長くは続かず、数年かけて下火になっていきました。要は、人間は大きな変化が来ても、喉元すぎれば・・・で、いつの間にか忘れてしまうんですね。 ただ、このコロナの状態は3年以上続いたので、社会に大きなマインドセットをもたらしました。社会全体で「デジタルを使ってアナログ作業を効率化させよう!非効率をもう一度見直そう!」という動きが広く起こっています。 2.DX以前に必要なこと しかし、「デジタル/DXを進めよう!」と思っても、簡単には行かないのが実状です。 順調に取り組みが進んでいる企業もありますが、社長や工場長が旗振りしても、実際に効果的に動けていない企業も非常に多くあります。むしろ、進んでいない企業が非常に多いです。これはなぜでしょうか? デジタル/DXのプロジェクトを始めると、「何のツールを入れようか?」や「ベンダー選定をどこにしようか?」と目が行きがちですが、上手くいかないのは、社長や経営層がこれらツールの話で話が終わると思っているからです。デジタル/DXというものは、「ツールやベンダーの話ではない!」ということを肝に銘じなければなりません。 では、何が必要でしょうか? まず必須で始めなければならないのは、「現状把握」と「仕事の棚卸し」です。 この事柄を紹介する例え話で、江戸時代のものづくりにロボットを導入したら効率がよくなるか?という話があります。 答えは否です。江戸時代の作業にロボットを導入しても効率化されません。これは江戸時代のものづくりには分業という考えがなく、業務の役割が明確にされていない為、そもそもロボットが入れる余地がないのです。 これは昔話のようで、実は今にもつながる話です。「ロボット化する/システムを利用する」というのは、業務を明確にすることが大前提となります。日本の工場が得意な曖昧な作業や暗黙知はロボットやシステムは受け付けてくれません。既存のやり方を全く同じに移行することは不可能なのです。 したがって、デジタル/DXを考えるには、まず、①現状の作業を正確に把握すること②業務を棚卸することのステップが重要となってくるのです。 これらが完了して初めて「何のツール/システム/ベンダーにしようか?」フェーズに移っていくのです。 3.何が良いことがあるの?は明確に! プロジェクトを始める時に、もう一つ重要なことがあります。 それは、「これを達成すると何が良いことがあるのか?」を社員全員に部門や社員のレベルに応じて、視線を落として、きちんと丁寧に、明確に説明することです。これはボトムアップではなくトップダウンで行わなければなりません。これも一度の説明で全員が同じ方向を向けるわけではありません。事あるごとにコミュニケーションを取り、根気強く説明と課題感を共有していき、同じ方角だけでも見られるようになるとよいですね。 とはいえ、プロジェクトを成し遂げるのは平坦な道ではありません。部門間の考え方の違いから、議論が白熱することもあるでしょう。反対意見により挫折することもあるかもしれません。その時に「何が良くなるか?」を全員で共通認識にしておかないと、頑張れる人だけ頑張るような一部の人の活動になってしまいます。そうなってしまったらプロジェクトの成功はありません。「デジタル/DXを進めよう!」ということは、一部の人の話ではないからです。 「社員全員がプロジェクトの意味を理解して同じをゴールに向かって進むこと」が成功する/しないの中では非常に重要な考え方です。 プロジェクトの明確な目的を持ち共有すること、そして、「現状把握」「仕事の棚卸し」をすることから始めることで、うまく進められる可能性は高まっていきます。   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 詳細はYoutubeにて公開しております。 https://youtu.be/H6Vq84C1Z4A https://www.funaisoken.co.jp/dl-contents/jy-ai_S045   ■多品種少量生産機械加工業のAI活用!社長セミナー 従業員30~200名の機械加工業の為の見積もりAI・生産計画AI・原価管理AIの活用! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/04/12 (水) 13:00~15:00 2023/04/17 (月) 13:00~15:00 2023/04/19 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847

DX人材の育成方法と手法のトレンド

2023.03.28

コロナ禍もおさまりつつあり、2023年3月13日にはマスク着用も緩和されました。 このコロナ禍では、リモートワークやシェアオフィスの拡大など現場に人が張り付かなくても業務を遂行できる体制構築が話題となりました。 DXがAIやIoT、ITツールを用いて業務効率化を行い、大きな業務改善を通して人時生産性を向上させるということであったとするのであれば、多くの企業でペーパーレス化などの表面的なコストカットのような結果こそ出ているにしても、削減した時間を新たに生産性に変換するような動きまでは至っていないケースが多いように思います。 そんな中で、現場での改善業務に繋げるためにDX人材の採用、育成というのは大きなテーマです。(※ここでのDX人材というのは、IoTやBI、AIなどIT技術に関する知見を持ち、自らそういった技術を以て現場で改善活動を実行できるような人材を指しています) 本コラムではDX人材育成のために日々取り組んでいらっしゃる中小企業の取り組みを2回に分けてご紹介したいと思います。 1回目である今回は、DX人材採用について経営者の方々が考えていらっしゃること、その課題についてご紹介します。 1.DX人材は製造業の救世主足りえるか あるお付き合いのある企業の社長様からDX人材の採用と育成についての計画を知らされたのは一昨年の4月頃でした。 代替わりを契機に基幹システムを導入し、データの一元管理に取り掛かるなど、社長は新しい技術を取り入れることに抵抗が無く、改革と称して大ナタを振るっていた時期です。 まだコロナ禍の見通しが立たず、デジタル化が騒がれる中、社内から競争力を得ていくにはやはり技術力だ、最新の技術情報(AIなど)に強みを持つ理系大学生を新卒では多く獲得し、中途ではそういった背景を持つ技術者を獲得すべきではないかとの話題が出ました。 実際、その会社ではそういった人材情報をペルソナに設定し、新卒、中途共に採用活動に明け暮れました。結果、半年で3名の中途社員を採用することが出来ました。一方、新卒はその枠に対する応募もあったものの、採用するには至らずという状況でした。 とはいえ、ついに自分たちの苦手分野であった部分での技術者を獲得できました。社長はビジョンを掲げ、採用した中途社員たちをDXプロジェクトメンバーに任命。順風満帆なスタートとなるはずでした。 それから1年ほどたち、プロジェクトはどのような状況かを伺いました。 なんと、中途採用者の内2名が退職してしまったというのです。 2.社内体制、協力体制ありきでないと輝けない DX人材として入社した三名は当初、様々なアナログな業務や改善ポイントを明らかにし、様々な手法でその問題を解決しようとした、といいます。 しかしながら、長い経験を持つ現場の社員や、いわゆるデジタル技術に対して知見のない他の社員たちからの後押しを得ることが出来ず改善プロジェクトは思うように前に進まなかったといいます。 中には、自分たちの仕事を奪うのか、というような声も生まれたとのことでかなりストレスフルな状況になってしまったとのことでした。 社長肝入りのプロジェクトということで、実際に社長も説明会を開くなどでフォローをしたとのことですが、1人辞め、また1人辞めとムーブメントは小さくなってしまいました。 基幹システムも導入し、DX人材も採用したにもかかわらず中々思うような動きにならない。 それどころか、会社への期待感も徐々に薄れているように感じたとおっしゃっていました。 その時、社長様はDX人材を採用することが大切ではない。DX人材を輝かせられる社内状況の整備こそが急務なのだと思い知ったといいます。 この状況の整備というのは難しく、社長の鶴の一声で整備ができるようなものではありません。 そこで、この会社では以下の3点に取り組むこととなりました。 デジタル技術勉強会の開催、全社員参加 ペーパーレス化(ワークフロー系)と脱判子方針 ノーコード、ローコード開発ツール導入 次回は、この3点の取組結果とポイントを解説させていただきます。   ▼事例レポート無料ダウンロードお申し込みはこちら▼ IT化・DX化の進め方とIT化計画書の書き方【中堅・中小企業向け】 https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_00856 レポートの内容 DX化を検討する中堅・中小製造業経営者必見 !! DX化を検討する社長! 本当に基幹システムを導入・刷新すれば会社が良くなりますか?? 根本原因を把握して業務改革!! IT化計画書の作り方   ■関連するセミナーのご案内 板金加工業の為のDX化による「儲けの改善」社長セミナー 生産管理・原価管理を徹底し、「勘による改善」から「データによる改善」へ! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/097412 ■開催内容 材料費高騰対策!儲けの改善の仕組み導入成功編 社長が知っておくべき同業他社の原価改善取り組み事例 社長の為の生産管理&原価管理の改善戦略 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/04/11 (火) 13:00~15:00 2023/04/13 (木) 13:00~15:00 2023/04/20 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/097412 いつも当コラムをご愛読いただきありがとうございます。 コロナ禍もおさまりつつあり、2023年3月13日にはマスク着用も緩和されました。 このコロナ禍では、リモートワークやシェアオフィスの拡大など現場に人が張り付かなくても業務を遂行できる体制構築が話題となりました。 DXがAIやIoT、ITツールを用いて業務効率化を行い、大きな業務改善を通して人時生産性を向上させるということであったとするのであれば、多くの企業でペーパーレス化などの表面的なコストカットのような結果こそ出ているにしても、削減した時間を新たに生産性に変換するような動きまでは至っていないケースが多いように思います。 そんな中で、現場での改善業務に繋げるためにDX人材の採用、育成というのは大きなテーマです。(※ここでのDX人材というのは、IoTやBI、AIなどIT技術に関する知見を持ち、自らそういった技術を以て現場で改善活動を実行できるような人材を指しています) 本コラムではDX人材育成のために日々取り組んでいらっしゃる中小企業の取り組みを2回に分けてご紹介したいと思います。 1回目である今回は、DX人材採用について経営者の方々が考えていらっしゃること、その課題についてご紹介します。 1.DX人材は製造業の救世主足りえるか あるお付き合いのある企業の社長様からDX人材の採用と育成についての計画を知らされたのは一昨年の4月頃でした。 代替わりを契機に基幹システムを導入し、データの一元管理に取り掛かるなど、社長は新しい技術を取り入れることに抵抗が無く、改革と称して大ナタを振るっていた時期です。 まだコロナ禍の見通しが立たず、デジタル化が騒がれる中、社内から競争力を得ていくにはやはり技術力だ、最新の技術情報(AIなど)に強みを持つ理系大学生を新卒では多く獲得し、中途ではそういった背景を持つ技術者を獲得すべきではないかとの話題が出ました。 実際、その会社ではそういった人材情報をペルソナに設定し、新卒、中途共に採用活動に明け暮れました。結果、半年で3名の中途社員を採用することが出来ました。一方、新卒はその枠に対する応募もあったものの、採用するには至らずという状況でした。 とはいえ、ついに自分たちの苦手分野であった部分での技術者を獲得できました。社長はビジョンを掲げ、採用した中途社員たちをDXプロジェクトメンバーに任命。順風満帆なスタートとなるはずでした。 それから1年ほどたち、プロジェクトはどのような状況かを伺いました。 なんと、中途採用者の内2名が退職してしまったというのです。 2.社内体制、協力体制ありきでないと輝けない DX人材として入社した三名は当初、様々なアナログな業務や改善ポイントを明らかにし、様々な手法でその問題を解決しようとした、といいます。 しかしながら、長い経験を持つ現場の社員や、いわゆるデジタル技術に対して知見のない他の社員たちからの後押しを得ることが出来ず改善プロジェクトは思うように前に進まなかったといいます。 中には、自分たちの仕事を奪うのか、というような声も生まれたとのことでかなりストレスフルな状況になってしまったとのことでした。 社長肝入りのプロジェクトということで、実際に社長も説明会を開くなどでフォローをしたとのことですが、1人辞め、また1人辞めとムーブメントは小さくなってしまいました。 基幹システムも導入し、DX人材も採用したにもかかわらず中々思うような動きにならない。 それどころか、会社への期待感も徐々に薄れているように感じたとおっしゃっていました。 その時、社長様はDX人材を採用することが大切ではない。DX人材を輝かせられる社内状況の整備こそが急務なのだと思い知ったといいます。 この状況の整備というのは難しく、社長の鶴の一声で整備ができるようなものではありません。 そこで、この会社では以下の3点に取り組むこととなりました。 デジタル技術勉強会の開催、全社員参加 ペーパーレス化(ワークフロー系)と脱判子方針 ノーコード、ローコード開発ツール導入 次回は、この3点の取組結果とポイントを解説させていただきます。   ▼事例レポート無料ダウンロードお申し込みはこちら▼ IT化・DX化の進め方とIT化計画書の書き方【中堅・中小企業向け】 https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_00856 レポートの内容 DX化を検討する中堅・中小製造業経営者必見 !! DX化を検討する社長! 本当に基幹システムを導入・刷新すれば会社が良くなりますか?? 根本原因を把握して業務改革!! IT化計画書の作り方   ■関連するセミナーのご案内 板金加工業の為のDX化による「儲けの改善」社長セミナー 生産管理・原価管理を徹底し、「勘による改善」から「データによる改善」へ! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/097412 ■開催内容 材料費高騰対策!儲けの改善の仕組み導入成功編 社長が知っておくべき同業他社の原価改善取り組み事例 社長の為の生産管理&原価管理の改善戦略 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/04/11 (火) 13:00~15:00 2023/04/13 (木) 13:00~15:00 2023/04/20 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/097412

製造業のAI導入、社員がすべき5つのポイント

2023.03.22

以前、AIの導入成功のために経営陣は何をすべきかについて説明をさせていただきました。そこで今回は社員が何をすべきかについて説明させていただきます。 経営陣がAIを導入したがっているかどうかに関係なく、企業の社員は、AIの導入・活用を見据えて準備しておく必要があります。数年で定年退職という人でも、人生90年・100年時代に向けて何らかの準備をしておいた方がよいでしょう。企業社員が準備をしておくべき重要なことは次の5つです。 社員がすべき5つのポイント (1)AIリテラシーを高めるために学ぼう (2)自分が関わっている業務を分析しよう (3)既存の情報処理の流れと自身の仕事の位置づけを知ろう (4)AI導入の可能性と自分の仕事がAIに置き換えられる可能性を考えよう (5)『AI導入・活用検討チーム』に参加しよう 1.AIリテラシーを高めるために学ぼう オンラインコースやトレーニングプログラムを受講することで、AIに関する基本的な知識から応用的な知識まで、幅広く学ぶことができます。また、AIに関する書籍や記事を読むことで、AIに関する基本的な知識や最新の技術動向を学ぶことができます。AIに関するイベントやカンファレンスに参加するのもよいでしょう。そうすることで、AIに関する最新の情報を得ることができます。また、AIに関する専門家との交流や議論を通じて、深い知見を得ることができます。 2.自分が関わっている業務を分析しよう 自分が自社のどんな事業のどんな業務のどの部分を担っているかを客観的に分析してみましょう。大事なのは、会社の業務の中での自分の位置付けと役割を把握することです。自分の部門の業務手順書を見たことがあるでしょうか?顧客対応や製造業、メンテナンスなど日常的にマニュアルの参照が必要な業務に携わっている場合以外は業務手順書を読むことはあまりないでしょう。つまり、自分がどのような業務プロセスのどこに位置付けられていて、全体の中でどんな役割を担っているかを正確に把握している人はそれほど多くないということです。 3.既存の情報処理の流れと自身の仕事の位置づけを知ろう 情報処理システムやPCがどう使われているのか、既存の情報処理の流れの中で自分はどんな位置づけでどんな作業をしているのかを把握しましょう。業務の流れと情報処理の流れが適合しているのかを検討することも必要です。業務の流れを知るために可視化しましょう。そのためにはフローチャートに表すのが一番です。検索すればサンプルはたくさん出てきます。いくつかを参考にすればフローチャートを書くのは決して難しくはありません。 4.AI導入の可能性と自分の仕事がAIに置き換えられる可能性を考えよう 上記の3つをしっかり実施すれば、AI導入の可能性や自分の仕事がAIに置き換えられる可能性があるか判別できるようになります。AIの導入で最も大事なことは、早い段階で導入の目的と得られるメリット(デメリットも)について考察することです。仕事の現場での実務に精通し、分析や判断ができる人材が、今後必ず必要となってくるのです。また、もしも今の業務がAIに置き換わる可能性がある場合はこのような置き換えられない職種にシフトすることも考えましょう。 5.『AI導入・活用検討チーム』に参加しよう 上記の4つが確実に実践できれば、社内に居場所がなくなることはないでしょう。さらに望ましいのは『AI導入・活用検討チーム』に参加することです。その能動的な姿勢がきっと次のステップにつながります。これを経営陣の視点から見ると、AI導入・活用の賛否のカギは現場の社員の理解・協力にあるということです。 6.まとめ 今回のコラムでは、以前の『AIの導入成功のために経営陣は何をすべきか』の社員バージョンについて説明させていただきました。経営陣と社員で同じような内容もございますがどちらにしても今後のことを考え、AI導入に際して積極的な役割を担えるように備えることが重要です。今回紹介した内容を参考に、自社でのスムーズなAI導入のきっかけになれば幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 詳細はYoutubeにて公開しております。 https://youtu.be/H6Vq84C1Z4A https://www.funaisoken.co.jp/dl-contents/jy-ai_S045   ■多品種少量生産機械加工業のAI活用!社長セミナー 従業員30~200名の機械加工業の為の見積もりAI・生産計画AI・原価管理AIの活用! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/04/12 (水) 13:00~15:00 2023/04/17 (月) 13:00~15:00 2023/04/19 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 いつも当コラムをご愛読いただきありがとうございます。 以前、AIの導入成功のために経営陣は何をすべきかについて説明をさせていただきました。そこで今回は社員が何をすべきかについて説明させていただきます。 経営陣がAIを導入したがっているかどうかに関係なく、企業の社員は、AIの導入・活用を見据えて準備しておく必要があります。数年で定年退職という人でも、人生90年・100年時代に向けて何らかの準備をしておいた方がよいでしょう。企業社員が準備をしておくべき重要なことは次の5つです。 社員がすべき5つのポイント (1)AIリテラシーを高めるために学ぼう (2)自分が関わっている業務を分析しよう (3)既存の情報処理の流れと自身の仕事の位置づけを知ろう (4)AI導入の可能性と自分の仕事がAIに置き換えられる可能性を考えよう (5)『AI導入・活用検討チーム』に参加しよう 1.AIリテラシーを高めるために学ぼう オンラインコースやトレーニングプログラムを受講することで、AIに関する基本的な知識から応用的な知識まで、幅広く学ぶことができます。また、AIに関する書籍や記事を読むことで、AIに関する基本的な知識や最新の技術動向を学ぶことができます。AIに関するイベントやカンファレンスに参加するのもよいでしょう。そうすることで、AIに関する最新の情報を得ることができます。また、AIに関する専門家との交流や議論を通じて、深い知見を得ることができます。 2.自分が関わっている業務を分析しよう 自分が自社のどんな事業のどんな業務のどの部分を担っているかを客観的に分析してみましょう。大事なのは、会社の業務の中での自分の位置付けと役割を把握することです。自分の部門の業務手順書を見たことがあるでしょうか?顧客対応や製造業、メンテナンスなど日常的にマニュアルの参照が必要な業務に携わっている場合以外は業務手順書を読むことはあまりないでしょう。つまり、自分がどのような業務プロセスのどこに位置付けられていて、全体の中でどんな役割を担っているかを正確に把握している人はそれほど多くないということです。 3.既存の情報処理の流れと自身の仕事の位置づけを知ろう 情報処理システムやPCがどう使われているのか、既存の情報処理の流れの中で自分はどんな位置づけでどんな作業をしているのかを把握しましょう。業務の流れと情報処理の流れが適合しているのかを検討することも必要です。業務の流れを知るために可視化しましょう。そのためにはフローチャートに表すのが一番です。検索すればサンプルはたくさん出てきます。いくつかを参考にすればフローチャートを書くのは決して難しくはありません。 4.AI導入の可能性と自分の仕事がAIに置き換えられる可能性を考えよう 上記の3つをしっかり実施すれば、AI導入の可能性や自分の仕事がAIに置き換えられる可能性があるか判別できるようになります。AIの導入で最も大事なことは、早い段階で導入の目的と得られるメリット(デメリットも)について考察することです。仕事の現場での実務に精通し、分析や判断ができる人材が、今後必ず必要となってくるのです。また、もしも今の業務がAIに置き換わる可能性がある場合はこのような置き換えられない職種にシフトすることも考えましょう。 5.『AI導入・活用検討チーム』に参加しよう 上記の4つが確実に実践できれば、社内に居場所がなくなることはないでしょう。さらに望ましいのは『AI導入・活用検討チーム』に参加することです。その能動的な姿勢がきっと次のステップにつながります。これを経営陣の視点から見ると、AI導入・活用の賛否のカギは現場の社員の理解・協力にあるということです。 6.まとめ 今回のコラムでは、以前の『AIの導入成功のために経営陣は何をすべきか』の社員バージョンについて説明させていただきました。経営陣と社員で同じような内容もございますがどちらにしても今後のことを考え、AI導入に際して積極的な役割を担えるように備えることが重要です。今回紹介した内容を参考に、自社でのスムーズなAI導入のきっかけになれば幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 詳細はYoutubeにて公開しております。 https://youtu.be/H6Vq84C1Z4A https://www.funaisoken.co.jp/dl-contents/jy-ai_S045   ■多品種少量生産機械加工業のAI活用!社長セミナー 従業員30~200名の機械加工業の為の見積もりAI・生産計画AI・原価管理AIの活用! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/04/12 (水) 13:00~15:00 2023/04/17 (月) 13:00~15:00 2023/04/19 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847