工場DX.com|船井総合研究所(船井総研) Produced by Funai Soken

RANKING

RANKINGランキング

テーマから探す

CONSULTING COLUMNコンサルティングコラム

世界トップクラスのシェア!(株)メトロール社長のセミナー登壇が決定!

2024.11.29

平素よりお世話になり、誠にありがとうございます。 今回は、「来年2025年2月19日(水)14:30~17:30」に 船井総研グループ東京本社で開催予定の 「多品種少量生産製造業向け 生産管理・生産技術DXセミナー」について、ご案内いたします。 【株式会社メトロール 代表取締役社長 松橋様より】 メトロールは1976年の創業以来、機械・電気電子・空圧・無線通信といった測定の基礎技術と工作機械や産業用ロボットに関するノウハウをコア技術に、自社ブランドのオリジナリティの高い高精度センサを開発・製造・販売しています。 弊社がDXに取り組んできた最大の理由は、まだ世の中にない、付加価値があって競争力のある製品を開発するためです。DXは人を3K業務やルーティン業務から解放し、人の心に余裕を生むための手段。人は心に余裕がないと、創造的かつ付加価値の高い仕事はできないと考えています。弊社のDXに関する取り組みが、少しでも皆様の会社経営の一助となれば幸いです。 株式会社メトロール 代表取締役社長 松橋卓司 氏     【ご紹介する事例のポイントを一部先行公開!】 「アナログかつ属人的な生産管理体制」から脱却!「システムを活用した生産管理」へシフトし、生産性アップを実現! 約10,000点にも及ぶ部品を人の手を介さずに自動発注! 適正な在庫管理を実現!必要なときに必要な製品を供給する仕組みの構築に成功! 製品の受注状況から製造過程における「進捗状況の見える化」を実現! 生産管理・生産技術DXを通じて、受注~出荷までのリードタイムを半減! 生産管理業務の単なる効率化・省力化だけでなく、付加価値アップも実現!     【本セミナーのポイント】 カンブリア宮殿にも出演!メディア掲載実績多数の株式会社メトロール 代表取締役社長の松橋様に直接ご登壇いただくセミナーです! 「精密位置決めスイッチ」で世界トップクラスのシェア!経常利益率15%を記録している株式会社メトロールの生産管理・生産技術DXに関する取り組み事例を特別公開!   【このような方におすすめのセミナーです】 ✓「従業員数10名以上」「一品一様」「多品種少量生産」の製造業 ✓業務の基幹となるパッケージシステムを導入していない(もしくは、導入したシステムを十分に使いこなせていない)製造業 ✓「Excelへの手入力作業」「紙帳票を使った業務」「二度手間・三度手間になっている業務」が多い製造業 ✓「アナログ化・ブラックボックス化・属人化」している自社の生産管理業務を「自動化・見える化・脱属人化」していきたい製造業 ✓従業員数129名・経常利益率15%のグローバルニッチトップ企業が実践する生産管理・生産技術DXの実践事例を学びたい製造業 ※本セミナーは会場の都合上、定員30名のセミナーとなっております。 ご興味のある方は「今すぐ!」本セミナーへお申し込みください。 皆様のご参加を、心よりお待ちしております!   ▼セミナー詳細・申込はこちらから▼ https://www.funaisoken.co.jp/seminar/122443 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/122443 平素よりお世話になり、誠にありがとうございます。 今回は、「来年2025年2月19日(水)14:30~17:30」に 船井総研グループ東京本社で開催予定の 「多品種少量生産製造業向け 生産管理・生産技術DXセミナー」について、ご案内いたします。 【株式会社メトロール 代表取締役社長 松橋様より】 メトロールは1976年の創業以来、機械・電気電子・空圧・無線通信といった測定の基礎技術と工作機械や産業用ロボットに関するノウハウをコア技術に、自社ブランドのオリジナリティの高い高精度センサを開発・製造・販売しています。 弊社がDXに取り組んできた最大の理由は、まだ世の中にない、付加価値があって競争力のある製品を開発するためです。DXは人を3K業務やルーティン業務から解放し、人の心に余裕を生むための手段。人は心に余裕がないと、創造的かつ付加価値の高い仕事はできないと考えています。弊社のDXに関する取り組みが、少しでも皆様の会社経営の一助となれば幸いです。 株式会社メトロール 代表取締役社長 松橋卓司 氏     【ご紹介する事例のポイントを一部先行公開!】 「アナログかつ属人的な生産管理体制」から脱却!「システムを活用した生産管理」へシフトし、生産性アップを実現! 約10,000点にも及ぶ部品を人の手を介さずに自動発注! 適正な在庫管理を実現!必要なときに必要な製品を供給する仕組みの構築に成功! 製品の受注状況から製造過程における「進捗状況の見える化」を実現! 生産管理・生産技術DXを通じて、受注~出荷までのリードタイムを半減! 生産管理業務の単なる効率化・省力化だけでなく、付加価値アップも実現!     【本セミナーのポイント】 カンブリア宮殿にも出演!メディア掲載実績多数の株式会社メトロール 代表取締役社長の松橋様に直接ご登壇いただくセミナーです! 「精密位置決めスイッチ」で世界トップクラスのシェア!経常利益率15%を記録している株式会社メトロールの生産管理・生産技術DXに関する取り組み事例を特別公開!   【このような方におすすめのセミナーです】 ✓「従業員数10名以上」「一品一様」「多品種少量生産」の製造業 ✓業務の基幹となるパッケージシステムを導入していない(もしくは、導入したシステムを十分に使いこなせていない)製造業 ✓「Excelへの手入力作業」「紙帳票を使った業務」「二度手間・三度手間になっている業務」が多い製造業 ✓「アナログ化・ブラックボックス化・属人化」している自社の生産管理業務を「自動化・見える化・脱属人化」していきたい製造業 ✓従業員数129名・経常利益率15%のグローバルニッチトップ企業が実践する生産管理・生産技術DXの実践事例を学びたい製造業 ※本セミナーは会場の都合上、定員30名のセミナーとなっております。 ご興味のある方は「今すぐ!」本セミナーへお申し込みください。 皆様のご参加を、心よりお待ちしております!   ▼セミナー詳細・申込はこちらから▼ https://www.funaisoken.co.jp/seminar/122443 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/122443

外観検査自動化の落とし穴!失敗例から学ぶ成功の秘訣とは?

2024.11.29

人手不足が深刻化する中、製造現場における自動化は喫緊の課題となっています。 特に、品質管理の要である外観検査の自動化は、多くの企業が関心を寄せているのではないでしょうか? 外観検査自動化は、AI技術の進化により、近年急速に普及が進んでいます。 しかし、AI外観検査を導入したものの、期待した効果を得られなかった、あるいは、かえってコストや手間が増えてしまったというケースも少なくありません。 そこで今回は、外観検査自動化に取り組む際に注意すべき点について、失敗例とその対策をお伝えします。 ぜひ最後までお読みいただき、今後の参考としていただければ幸いです。 1.対象品種の選定ミス 「とりあえずAIを導入すれば、何でも自動化できる!」と考えていませんか? 実は、AI外観検査が得意な品種と苦手な品種があります。 例えば、複雑な形状の部品や、表面に凹凸が多い部品は、画像処理が難しく、AIによる検出精度が低下する可能性があります。 また、小ロット生産の製品の場合、AIモデルの学習に必要なデータ量が不足し、十分な精度が得られないケースも。 さらに、製品のライフサイクルが短い場合は、AIモデルの構築や調整に時間がかかり、費用対効果が低くなる可能性も考えられます。 ☆対策 導入前に、AI外観検査に適した品種かどうかを慎重に検討しましょう。 複雑な形状の部品には、3Dカメラや特殊な照明を用いるなど、工夫が必要です。 小ロット生産品には、データ拡張技術や転移学習などを活用し、少ないデータでも高精度なAIモデルを構築する必要があります。 2.AIへの過度な期待 AIは、近年目覚ましい発展を遂げていますが、万能ではありません。 特に、外観検査においては、以下のような限界があります。 未知の不良に対応できないAIは、学習データに含まれる不良しか検出できません。 例えば、学習データに「傷」のデータが含まれていない場合、AIは「傷」を不良として認識できません。 微妙な判断が難しい人間であれば、経験や勘に基づいて判断できる微妙な不良も、AIには難しい場合があります。 例えば、「わずかな色の違い」や「微妙な形状の歪み」などは、AIでは判断が難しい場合があります。 環境変化に弱い照明条件やカメラの位置が変わると、AIの検出精度が低下する可能性があります。 例えば、日中の自然光と夜間の人工光では、同じ製品でも画像の見え方が異なるため、AIの認識精度に影響を与える可能性があります。 ☆対策 AIの得意・不得意を理解し、過度な期待は禁物です。 AIはあくまで人間の作業を支援するツールとして捉え、最終的な判断は人間が行うようにしましょう。 目視検査とAI検査を併用することで、より高い精度で不良を検出できます。 定期的にAIモデルの精度を評価し、必要があれば再学習や調整を行いましょう。 3.費用見積もりの甘さ AI外観検査システムの導入には、以下のような費用がかかります。 初期費用・ソフトウェアライセンス費用・ハードウェア費用(カメラ、照明、検査装置など)・システム構築費用(コンサルティング、設計、開発、設置など)・AIモデル作成費用(データ収集、アノテーション、学習など) 運用費用・システム保守費用・AIモデルのメンテナンス費用(再学習、調整など)・電力料金・人件費 これらの費用を正確に見積もらないと、導入後に予想外の出費が発生し、予算オーバーに陥る可能性があります。 ☆対策 導入前に、複数のベンダーから見積もりを取り、費用を比較検討しましょう。 見積もり内容を詳細に確認し、不明な点は必ず質問しましょう。 運用費用についても、事前にしっかりと見積もり、長期的なコストを把握しましょう。 費用対効果をシミュレーションし、投資回収の期間を見積もりましょう。 4.導入後、検査機を放置してしまった AI外観検査システムを導入したら終わりではありません。 AIモデルは、時間の経過とともに精度が低下していくため、定期的なメンテナンスや再学習が必要です。 また、製品の仕様変更や新たな不良が発生した場合にも、AIモデルを更新する必要があります。 ☆対策 AIモデルの運用担当者を決め、責任を持ってメンテナンスや再学習を行う体制を整えましょう。 定期的にAIモデルの精度を評価し、必要があれば再学習や調整を行いましょう。 製品仕様の変更や新たな不良発生時には、速やかにAIモデルを更新しましょう。 運用マニュアルを作成し、担当者が変更になった場合でもスムーズに引き継ぎができるようにしましょう。 5.まとめ 5-1次世代の金属加工技術 AIやIoTを駆使した次世代の金属加工技術は、加工プロセスの可視化や自動化により、さらなる生産性の向上を目指しています。特に、AIを用いた品質管理の自動化やリアルタイムデータの分析により、製品の精度を保ちながら効率的な生産が可能となりました。 導入目的を明確にする 適切な対象品種を選ぶ AIの特性を理解する 費用対効果をシミュレーションする 運用体制を整える しかし、いざ導入を検討するとなると、 「具体的にどのように進めればいいのかわからない…」 「自社に合ったシステムやAIの見極め方が難しい…」 といった悩みをお持ちの方もいらっしゃるのではないでしょうか? そんな皆様に朗報です! 船井総研では、樹脂成型・ゴム製品製造業の社長様向けに、AI外観検査導入を成功に導くためのセミナーを開催いたします。 本セミナーでは AI外観検査導入の成功ポイント 具体的な取り組み事例 多品種小ロット生産における自動化の進め方 AI導入・自動化を成功させるための社長の役割 など、盛りだくさんの内容をご用意しております。 過去の失敗事例から学び、成功へと繋がるヒントが満載です。 AI外観検査導入を成功させ、人材不足解消、品質向上、コスト削減を実現したいとお考えの社長様は、ぜひこの機会にご参加ください。   ▼セミナー詳細・申込はこちらから▼ https://www.funaisoken.co.jp/seminar/121701 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/121701 人手不足が深刻化する中、製造現場における自動化は喫緊の課題となっています。 特に、品質管理の要である外観検査の自動化は、多くの企業が関心を寄せているのではないでしょうか? 外観検査自動化は、AI技術の進化により、近年急速に普及が進んでいます。 しかし、AI外観検査を導入したものの、期待した効果を得られなかった、あるいは、かえってコストや手間が増えてしまったというケースも少なくありません。 そこで今回は、外観検査自動化に取り組む際に注意すべき点について、失敗例とその対策をお伝えします。 ぜひ最後までお読みいただき、今後の参考としていただければ幸いです。 1.対象品種の選定ミス 「とりあえずAIを導入すれば、何でも自動化できる!」と考えていませんか? 実は、AI外観検査が得意な品種と苦手な品種があります。 例えば、複雑な形状の部品や、表面に凹凸が多い部品は、画像処理が難しく、AIによる検出精度が低下する可能性があります。 また、小ロット生産の製品の場合、AIモデルの学習に必要なデータ量が不足し、十分な精度が得られないケースも。 さらに、製品のライフサイクルが短い場合は、AIモデルの構築や調整に時間がかかり、費用対効果が低くなる可能性も考えられます。 ☆対策 導入前に、AI外観検査に適した品種かどうかを慎重に検討しましょう。 複雑な形状の部品には、3Dカメラや特殊な照明を用いるなど、工夫が必要です。 小ロット生産品には、データ拡張技術や転移学習などを活用し、少ないデータでも高精度なAIモデルを構築する必要があります。 2.AIへの過度な期待 AIは、近年目覚ましい発展を遂げていますが、万能ではありません。 特に、外観検査においては、以下のような限界があります。 未知の不良に対応できないAIは、学習データに含まれる不良しか検出できません。 例えば、学習データに「傷」のデータが含まれていない場合、AIは「傷」を不良として認識できません。 微妙な判断が難しい人間であれば、経験や勘に基づいて判断できる微妙な不良も、AIには難しい場合があります。 例えば、「わずかな色の違い」や「微妙な形状の歪み」などは、AIでは判断が難しい場合があります。 環境変化に弱い照明条件やカメラの位置が変わると、AIの検出精度が低下する可能性があります。 例えば、日中の自然光と夜間の人工光では、同じ製品でも画像の見え方が異なるため、AIの認識精度に影響を与える可能性があります。 ☆対策 AIの得意・不得意を理解し、過度な期待は禁物です。 AIはあくまで人間の作業を支援するツールとして捉え、最終的な判断は人間が行うようにしましょう。 目視検査とAI検査を併用することで、より高い精度で不良を検出できます。 定期的にAIモデルの精度を評価し、必要があれば再学習や調整を行いましょう。 3.費用見積もりの甘さ AI外観検査システムの導入には、以下のような費用がかかります。 初期費用・ソフトウェアライセンス費用・ハードウェア費用(カメラ、照明、検査装置など)・システム構築費用(コンサルティング、設計、開発、設置など)・AIモデル作成費用(データ収集、アノテーション、学習など) 運用費用・システム保守費用・AIモデルのメンテナンス費用(再学習、調整など)・電力料金・人件費 これらの費用を正確に見積もらないと、導入後に予想外の出費が発生し、予算オーバーに陥る可能性があります。 ☆対策 導入前に、複数のベンダーから見積もりを取り、費用を比較検討しましょう。 見積もり内容を詳細に確認し、不明な点は必ず質問しましょう。 運用費用についても、事前にしっかりと見積もり、長期的なコストを把握しましょう。 費用対効果をシミュレーションし、投資回収の期間を見積もりましょう。 4.導入後、検査機を放置してしまった AI外観検査システムを導入したら終わりではありません。 AIモデルは、時間の経過とともに精度が低下していくため、定期的なメンテナンスや再学習が必要です。 また、製品の仕様変更や新たな不良が発生した場合にも、AIモデルを更新する必要があります。 ☆対策 AIモデルの運用担当者を決め、責任を持ってメンテナンスや再学習を行う体制を整えましょう。 定期的にAIモデルの精度を評価し、必要があれば再学習や調整を行いましょう。 製品仕様の変更や新たな不良発生時には、速やかにAIモデルを更新しましょう。 運用マニュアルを作成し、担当者が変更になった場合でもスムーズに引き継ぎができるようにしましょう。 5.まとめ 5-1次世代の金属加工技術 AIやIoTを駆使した次世代の金属加工技術は、加工プロセスの可視化や自動化により、さらなる生産性の向上を目指しています。特に、AIを用いた品質管理の自動化やリアルタイムデータの分析により、製品の精度を保ちながら効率的な生産が可能となりました。 導入目的を明確にする 適切な対象品種を選ぶ AIの特性を理解する 費用対効果をシミュレーションする 運用体制を整える しかし、いざ導入を検討するとなると、 「具体的にどのように進めればいいのかわからない…」 「自社に合ったシステムやAIの見極め方が難しい…」 といった悩みをお持ちの方もいらっしゃるのではないでしょうか? そんな皆様に朗報です! 船井総研では、樹脂成型・ゴム製品製造業の社長様向けに、AI外観検査導入を成功に導くためのセミナーを開催いたします。 本セミナーでは AI外観検査導入の成功ポイント 具体的な取り組み事例 多品種小ロット生産における自動化の進め方 AI導入・自動化を成功させるための社長の役割 など、盛りだくさんの内容をご用意しております。 過去の失敗事例から学び、成功へと繋がるヒントが満載です。 AI外観検査導入を成功させ、人材不足解消、品質向上、コスト削減を実現したいとお考えの社長様は、ぜひこの機会にご参加ください。   ▼セミナー詳細・申込はこちらから▼ https://www.funaisoken.co.jp/seminar/121701 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/121701

金属加工業における板金プレス加工業の動向と経営戦略

2024.11.22

1.はじめに:金属加工業界の現状と未来の展望 金属加工業界は今、大きな転換期を迎えています。自動車業界の電動化や半導体の需要拡大、環境対応への高まる関心により、板金プレス加工業もその動向に合わせた変革が求められています。本記事では、板金プレス加工業の最新トレンドや業界全体が直面している課題に焦点を当て、今後の成長に必要な戦略について考察します。 2.第2章: 中小企業の挑戦と戦略 2-1 不況からの回復に向けた取り組み 2024年現在、不況の影響は依然として多くの中小企業に重くのしかかっています。特に板金プレス加工業においては、設備投資や技術力の維持が課題となっています。企業はコスト削減や効率化に取り組む一方、試作品や小ロット生産を重視することで、受注を確保する努力を続けています。 2-2 M&Aを通じた企業の生き残り戦略 業界再編が進む中で、多くの企業がM&Aを通じて事業を拡大し、新しい市場への参入を目指しています。特に、自社の強みを活かした企業買収や提携により、一貫生産体制を確立する企業が増加しています。この動きは、安定的な受注を確保し、経営基盤を強化するための重要な手段となっています。 3.第3章: 技術革新と自動化の影響 3-1 板金加工と切削加工の融合 板金加工と切削加工の融合は、製品の多様化や顧客ニーズの高まりに対応するための手段として注目されています。これにより、製品の品質や精度を高め、加工コストを削減することが可能です。特に、複雑な形状を短期間で加工する能力が高く評価され、顧客からの問い合わせも増加しています。 3-2 世界的な技術展とその実態 金属加工業界では、年々進化する技術を活用した新たな加工方法が次々と登場しています。ドイツや中国などで開催される技術展には、多くの日本企業も出展しており、最新のプレス機やAI技術を駆使した自動化装置が注目を集めています。これらの技術導入は、生産効率の向上とコスト削減に大きく寄与しています。 4.第4章: 業界の未来を支える力 経営者に必要な知識と力 「2025年の崖」という言葉があるように、今後はさらなる労働人口の減少によりDX化が急務となります。ただし、闇雲にシステム導入をする・社内のDXプロジェクトを担当者に一任するとDX化は成功しません。急速に変化する業界に対応するためには、経営者自らが新技術の導入や設備投資について深く理解し、最適な選択を行う力が求められます。特に、中小企業においては、現場の声を反映した柔軟な経営戦略が不可欠です。経営者は積極的に情報収集を行い、技術や市場動向を把握することが企業の成長に繋がります。 5.第5章: プレス加工と新たな技術の展開 5-1次世代の金属加工技術 AIやIoTを駆使した次世代の金属加工技術は、加工プロセスの可視化や自動化により、さらなる生産性の向上を目指しています。特に、AIを用いた品質管理の自動化やリアルタイムデータの分析により、製品の精度を保ちながら効率的な生産が可能となりました。 5-2次世代の原価管理 原価管理において材料費や光熱費などは管理しやすいですが、労務費には作業者の製造工数が含まれるため正確に管理できていない企業も多いのではないでしょうか。原価管理が適切にできていない場合、製品別にどれくらいの利益が出ているのか・見積価格をどれくらいに設定したらよいのか・見積と実績にどれくらいの差異があるのか、など経営に直結する情報があいまいになってしまいます。そのため、製造に誰が・いつ・どれくらい関わったのかを正確に把握する必要があります。 そこで、タブレットやIoTを活用してデータをシステムに自動転送できるようになると、紙日報に記入するよりも作業者の負担にならずに、二重・三重のシステム転記作業もなくなります。 6.おわりに: 今後の展望と金属加工業界が培った力 これからの金属加工業界は、持続可能な成長に向けた取り組みが重要です。業界全体が技術革新と経営戦略の見直しを図り、次世代の課題に向き合っていくことが求められます。板金プレス加工業も、他業界と連携を強化し、新しい製品開発やサービス提供を通じて市場の需要に応えていく必要があります。 今回の「板金・プレス加工業のための自社データAI活用セミナー」では、現場主導の業務改善を行い付加価値額20%向上した事例を交えて徹底解説いたします。 ご興味のある方はぜひご参加ください。   ▼セミナー詳細・申込はこちらから▼ https://www.funaisoken.co.jp/seminar/122446 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/122446 1.はじめに:金属加工業界の現状と未来の展望 金属加工業界は今、大きな転換期を迎えています。自動車業界の電動化や半導体の需要拡大、環境対応への高まる関心により、板金プレス加工業もその動向に合わせた変革が求められています。本記事では、板金プレス加工業の最新トレンドや業界全体が直面している課題に焦点を当て、今後の成長に必要な戦略について考察します。 2.第2章: 中小企業の挑戦と戦略 2-1 不況からの回復に向けた取り組み 2024年現在、不況の影響は依然として多くの中小企業に重くのしかかっています。特に板金プレス加工業においては、設備投資や技術力の維持が課題となっています。企業はコスト削減や効率化に取り組む一方、試作品や小ロット生産を重視することで、受注を確保する努力を続けています。 2-2 M&Aを通じた企業の生き残り戦略 業界再編が進む中で、多くの企業がM&Aを通じて事業を拡大し、新しい市場への参入を目指しています。特に、自社の強みを活かした企業買収や提携により、一貫生産体制を確立する企業が増加しています。この動きは、安定的な受注を確保し、経営基盤を強化するための重要な手段となっています。 3.第3章: 技術革新と自動化の影響 3-1 板金加工と切削加工の融合 板金加工と切削加工の融合は、製品の多様化や顧客ニーズの高まりに対応するための手段として注目されています。これにより、製品の品質や精度を高め、加工コストを削減することが可能です。特に、複雑な形状を短期間で加工する能力が高く評価され、顧客からの問い合わせも増加しています。 3-2 世界的な技術展とその実態 金属加工業界では、年々進化する技術を活用した新たな加工方法が次々と登場しています。ドイツや中国などで開催される技術展には、多くの日本企業も出展しており、最新のプレス機やAI技術を駆使した自動化装置が注目を集めています。これらの技術導入は、生産効率の向上とコスト削減に大きく寄与しています。 4.第4章: 業界の未来を支える力 経営者に必要な知識と力 「2025年の崖」という言葉があるように、今後はさらなる労働人口の減少によりDX化が急務となります。ただし、闇雲にシステム導入をする・社内のDXプロジェクトを担当者に一任するとDX化は成功しません。急速に変化する業界に対応するためには、経営者自らが新技術の導入や設備投資について深く理解し、最適な選択を行う力が求められます。特に、中小企業においては、現場の声を反映した柔軟な経営戦略が不可欠です。経営者は積極的に情報収集を行い、技術や市場動向を把握することが企業の成長に繋がります。 5.第5章: プレス加工と新たな技術の展開 5-1次世代の金属加工技術 AIやIoTを駆使した次世代の金属加工技術は、加工プロセスの可視化や自動化により、さらなる生産性の向上を目指しています。特に、AIを用いた品質管理の自動化やリアルタイムデータの分析により、製品の精度を保ちながら効率的な生産が可能となりました。 5-2次世代の原価管理 原価管理において材料費や光熱費などは管理しやすいですが、労務費には作業者の製造工数が含まれるため正確に管理できていない企業も多いのではないでしょうか。原価管理が適切にできていない場合、製品別にどれくらいの利益が出ているのか・見積価格をどれくらいに設定したらよいのか・見積と実績にどれくらいの差異があるのか、など経営に直結する情報があいまいになってしまいます。そのため、製造に誰が・いつ・どれくらい関わったのかを正確に把握する必要があります。 そこで、タブレットやIoTを活用してデータをシステムに自動転送できるようになると、紙日報に記入するよりも作業者の負担にならずに、二重・三重のシステム転記作業もなくなります。 6.おわりに: 今後の展望と金属加工業界が培った力 これからの金属加工業界は、持続可能な成長に向けた取り組みが重要です。業界全体が技術革新と経営戦略の見直しを図り、次世代の課題に向き合っていくことが求められます。板金プレス加工業も、他業界と連携を強化し、新しい製品開発やサービス提供を通じて市場の需要に応えていく必要があります。 今回の「板金・プレス加工業のための自社データAI活用セミナー」では、現場主導の業務改善を行い付加価値額20%向上した事例を交えて徹底解説いたします。 ご興味のある方はぜひご参加ください。   ▼セミナー詳細・申込はこちらから▼ https://www.funaisoken.co.jp/seminar/122446 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/122446

11/15に開催された市川港開発協議会の勉強会にて、飯塚と徳竹が登壇しました

2024.11.22

皆様、こんにちは。 株式会社船井総合研究所の塩田です。 11月15日に開催されました、市川港開発協議会の研修会にて、弊社の飯塚・徳竹が講演いたしました。 今回は、「人材不足時代を勝ち抜くDX戦略(基本編)」をテーマに、DXとは何か、またDXの進め方について講演をおこないました。 ▽当日の様子 当日は、DXを成功させるための以下のポイントについてご説明させていただきました。 業務の見直し(標準化・一元化)DXを成功させるためには、既存のアナログ作業をデジタル化するだけでは不十分です。まず、業務内容やフローを見直し、無駄をなくし、標準化・一元化を進めることが重要です。 優先順位付けDXを進めるには、解決すべき課題は山積みです。限られた時間とリソースを有効活用するためには、課題の重要度や緊急性を評価し、優先順位をつけて取り組むことが重要です。 全社員への周知徹底DXは、一部の担当者だけで進めるものではありません。全社員がDXの目的や内容を理解し、積極的に参加しなければ、真の変革は実現できません。そのため、経営者が率先してビジョンや戦略を共有し、社員の意識改革を促進する必要があります。 スモールスタート最初から完璧なシステムを構築しようとすると、時間やコストがかかりすぎるだけでなく、失敗のリスクも高まります。まずは、比較的小規模なプロジェクトから着手し、成功体験を積み重ねながら、段階的にDXを推進していくことが重要です。 目的を見失わないDXを進める過程で、最新の技術やシステムに目を奪われ、本来の目的を見失ってしまうことがあります。DXはあくまでも手段であり、目的は企業の成長や競争力強化です。常に目的を意識し、手段が目的化しないように注意する必要があります。 船井総研では、コンサルタントの講演依頼を承っております。ご希望の際は、弊社問い合わせフォームよりご依頼をお願いいたします。 皆様、こんにちは。 株式会社船井総合研究所の塩田です。 11月15日に開催されました、市川港開発協議会の研修会にて、弊社の飯塚・徳竹が講演いたしました。 今回は、「人材不足時代を勝ち抜くDX戦略(基本編)」をテーマに、DXとは何か、またDXの進め方について講演をおこないました。 ▽当日の様子 当日は、DXを成功させるための以下のポイントについてご説明させていただきました。 業務の見直し(標準化・一元化)DXを成功させるためには、既存のアナログ作業をデジタル化するだけでは不十分です。まず、業務内容やフローを見直し、無駄をなくし、標準化・一元化を進めることが重要です。 優先順位付けDXを進めるには、解決すべき課題は山積みです。限られた時間とリソースを有効活用するためには、課題の重要度や緊急性を評価し、優先順位をつけて取り組むことが重要です。 全社員への周知徹底DXは、一部の担当者だけで進めるものではありません。全社員がDXの目的や内容を理解し、積極的に参加しなければ、真の変革は実現できません。そのため、経営者が率先してビジョンや戦略を共有し、社員の意識改革を促進する必要があります。 スモールスタート最初から完璧なシステムを構築しようとすると、時間やコストがかかりすぎるだけでなく、失敗のリスクも高まります。まずは、比較的小規模なプロジェクトから着手し、成功体験を積み重ねながら、段階的にDXを推進していくことが重要です。 目的を見失わないDXを進める過程で、最新の技術やシステムに目を奪われ、本来の目的を見失ってしまうことがあります。DXはあくまでも手段であり、目的は企業の成長や競争力強化です。常に目的を意識し、手段が目的化しないように注意する必要があります。 船井総研では、コンサルタントの講演依頼を承っております。ご希望の際は、弊社問い合わせフォームよりご依頼をお願いいたします。
コンサルティングコラム一覧

SEMINARセミナー・研究会情報

セミナー・研究会情報一覧