ROBOT CONSULTING COLUMN 自動化・ロボットコンサルティングコラム

専門コンサルタントが執筆するAI・ロボットコラム
最新のAI・ロボット技術に精通したコンサルタントによる定期コラム

産業用ロボット導入!自動化によって生産効率を高める5つのポイント

2020.02.04

1 はじめに 産業用ロボットで溶接や運搬、組立作業を自動化にしようと考えている企業様は多いかと思います。ただし、生産効率を高めるにはいくつかポイントがあります。従来の手作業による溶接の生産形態を踏襲していたのでは効果があまり見られません。そこで、今回はロボット導入する際に気を付けたいポイントをお伝えしたいと思います! 1.1 ロボット導入を前提にした生産システム全体の改革 まずは、産業用ロボットを導入する事を前提にした生産システム全体の改革が必要です。モノの流れや作業順序など溶接加工の上下流に当たる工程の改革をロボット導入による自動化と並行して行う事で、モノ作り全体の効率が高まり結果、他工程への改革に繋がっていく好循環のスパイラルに繋がっていきます。 溶接・塗装・運搬・組立を自動化する事で省人効果や熟練作業者の代替え等の直接的な効果にとどまらず、工場全体の変革に踏み込む事が大きな間接的効果を生み出すのではないでしょうか。 1.2 作業を分解して分析することでコスト削減 生産現場で感じる多くの課題から、産業用ロボットの導入を検討されていらっしゃる方は多く、既存の生産工程をそのままロボットに置き換えるイメージを持っている方も多いと思います。 しかし、ロボットを導入する過程では、ロボットで加工するモノのハンドリングや作業工程の分解が必要になります。既存の生産体制で何となく一連の工程として作業していても、自動化する際は切り分けて考えます。作業を細分化して可能な限り効率良い動作をロボットシステムで導入するのは、必然的に既存作業を一つ一つ分析しなおして最も効率良い方法を模索するという事なのです。 この既存作業を分解して分析する一連の作業そのものが、工場全体のモノの流れを整流化するために大事です。 作業要素を分解していく過程で、既存の生産方式では明確に定量化されて管理されていなかった寸法や性質、分量を調査する事で隠れていた無駄を発見出来れば、コスト削減につながり自動化に伴った間接的効果が出てきます。 1.3 自動化を前提としたロボットシステムを設計 ロボットによる自動化システムの稼働率や生産能力を最大限に発揮させるためには、同形状や類似形状品をグルーピングし、加工方法や運搬のステーション毎に自動化する事で生まれる効果(人工や生産性)を分析し、ステーション毎に必要な機能を備えた自動化システムを設計します。 上記の作業分解と効果分析があいまいなまま自動化システムを導入すると、逆に効率が悪化してしまいます。しっかりと既存の生産体制の作業を分析し、課題を見極めて自動化する対象行程の絞り込みを行えば、おのずと成果は上がります。一連の作業の改革を実行する事で、他工程の問題が見えるようになり、更に作業やコストの改善が進んで行くのではないでしょうか。 1.4 産業用ロボットのティーチングと操作性 産業用ロボットの操作性は自動化の効率を最大限高めている為に必要な要件です。一度自動化システムの導入が完了してもそれを維持する為や、より活用範囲を広げる為には時折人間の力が必要になってきます。 この時、経験の浅い人でも容易に動作を変更・追加できるソフトウェアを使用しているかというのは、非常に大きな要件です。 多品種・小ロット型の生産や、不定期で発生する加工部品のマイナーチェンジに生産現場が素早く対応出来る事が、長期間で自動化による経済効果を発揮する為に必要となりますので、自動化を検討する際は、ロボット制御のアプリケーションにも注目する必要があります。 基本的にロボットメーカー各社ではそれぞれのロボット対応のPRG編集ソフトウェアを開発しています。 しかし、こちらのソフトウェアは基本的にティーチングペンダントを用いて、ロボットに軌道や動作種別を教示していくものですので、それほど多機能なものではありません。 一度ティーチングしてしまえば数か月から数年変更が必要無いというような生産方式の場合は、上記のソフトウェアでも十分に対応可能と思いますが、高頻度で加工の仕様や形状の変更が起きる工程の自動化の場合は非常に対応が困難となってきます。 (ティーチングペンダントでのティーチングは、現場で実際の加工と突き合わせながら一つ一つ手でロボットを操作してPRGを作成していくので、一般的に非常に多くの工数が掛かります) 1.5 オフラインティーリングソフトウェアの活用 しかし現在、ロボットメーカー各社に対応している汎用の「オフラインティーチングソフトウェア」の開発が非常に進んできています。この「オフラインティーチングソフトウェア」の何が長所かというとPCを用いてシミュレーションを行いながらロボットの動作を決めていく事が出来る点です。 部品組み立て工程や運搬工程であれば、3D-CADを基にPC上で干渉回避を確認しながらロボットハンドの軌道を設定していけます。溶接工程であれば、加工物の3D-CADを基に溶接面の軌道や溶接条件などもほぼ自動でPRGを作成してくれます。 オフラインティーチングソフトウェアのメーカーも各社操作性を高める為に様々な工夫を施しており、まったく知識の無かった人でも数日間のトレーニングを受けて、実際に操作できる用になるレベルまで利便性は向上しています。今後もこの分野は更に進歩し、より簡単により早くにロボットティーチングが出来るようになってくると思われますので要チェックです。 2 まとめ 産業用ロボットを導入し最大限に効果を発揮する為には、 1. 既存作業の要素分解と各工程を自動化したときの経済効果を確認 2. 要素分解した作業毎の整備や定量化できていない要素を分析し、ムダを見つけ改善する 3. 自動化を前提とした最適なシステムの設計を行う。 4. 導入後の仕様方法や生産品種を検討した上でロボットティーチングの方法を決める。 5. 多品種生産やロボットティーチングの工数を削減したい場合は、オフラインティーチングソフトの導入も検討する。 上記により間接的にコスト改善効果や生産システム全体の見直しを図る事が肝要であると述べて来ました。人間の作業をロボットに置き換えるという局所的な見方ではなく、製造現場全体の改革のひとつの手段として産業用ロボットの導入を検討してみてはいかがでしょうか。 本記事ではロボットとはどのような種類があるのかを簡単にまとめてきました。他の記事では、中小企業がロボット化を実現している事例なども紹介しておりますから、ロボット化をお考えの方のきっとお役に立つことと思います。是非一度、ご覧になって下さい。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 自動化・ロボット化事例集 vol.2 本事例集は、全国の先進的な工場が取り組む「自動化・ロボット化」の事例をまとめたものとなります。 これから自動化・ロボット化に取組もうと考える皆さまに、 「工場にロボット・IoTを導入する」ための具体的なノウハウを、 事例を通して知っていただくことを目的に作成しました。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー https://smart-factory.funaisoken.co.jp/download/automation-robotization-examples-02/   [sc name="robot"][/sc] 1 はじめに 産業用ロボットで溶接や運搬、組立作業を自動化にしようと考えている企業様は多いかと思います。ただし、生産効率を高めるにはいくつかポイントがあります。従来の手作業による溶接の生産形態を踏襲していたのでは効果があまり見られません。そこで、今回はロボット導入する際に気を付けたいポイントをお伝えしたいと思います! 1.1 ロボット導入を前提にした生産システム全体の改革 まずは、産業用ロボットを導入する事を前提にした生産システム全体の改革が必要です。モノの流れや作業順序など溶接加工の上下流に当たる工程の改革をロボット導入による自動化と並行して行う事で、モノ作り全体の効率が高まり結果、他工程への改革に繋がっていく好循環のスパイラルに繋がっていきます。 溶接・塗装・運搬・組立を自動化する事で省人効果や熟練作業者の代替え等の直接的な効果にとどまらず、工場全体の変革に踏み込む事が大きな間接的効果を生み出すのではないでしょうか。 1.2 作業を分解して分析することでコスト削減 生産現場で感じる多くの課題から、産業用ロボットの導入を検討されていらっしゃる方は多く、既存の生産工程をそのままロボットに置き換えるイメージを持っている方も多いと思います。 しかし、ロボットを導入する過程では、ロボットで加工するモノのハンドリングや作業工程の分解が必要になります。既存の生産体制で何となく一連の工程として作業していても、自動化する際は切り分けて考えます。作業を細分化して可能な限り効率良い動作をロボットシステムで導入するのは、必然的に既存作業を一つ一つ分析しなおして最も効率良い方法を模索するという事なのです。 この既存作業を分解して分析する一連の作業そのものが、工場全体のモノの流れを整流化するために大事です。 作業要素を分解していく過程で、既存の生産方式では明確に定量化されて管理されていなかった寸法や性質、分量を調査する事で隠れていた無駄を発見出来れば、コスト削減につながり自動化に伴った間接的効果が出てきます。 1.3 自動化を前提としたロボットシステムを設計 ロボットによる自動化システムの稼働率や生産能力を最大限に発揮させるためには、同形状や類似形状品をグルーピングし、加工方法や運搬のステーション毎に自動化する事で生まれる効果(人工や生産性)を分析し、ステーション毎に必要な機能を備えた自動化システムを設計します。 上記の作業分解と効果分析があいまいなまま自動化システムを導入すると、逆に効率が悪化してしまいます。しっかりと既存の生産体制の作業を分析し、課題を見極めて自動化する対象行程の絞り込みを行えば、おのずと成果は上がります。一連の作業の改革を実行する事で、他工程の問題が見えるようになり、更に作業やコストの改善が進んで行くのではないでしょうか。 1.4 産業用ロボットのティーチングと操作性 産業用ロボットの操作性は自動化の効率を最大限高めている為に必要な要件です。一度自動化システムの導入が完了してもそれを維持する為や、より活用範囲を広げる為には時折人間の力が必要になってきます。 この時、経験の浅い人でも容易に動作を変更・追加できるソフトウェアを使用しているかというのは、非常に大きな要件です。 多品種・小ロット型の生産や、不定期で発生する加工部品のマイナーチェンジに生産現場が素早く対応出来る事が、長期間で自動化による経済効果を発揮する為に必要となりますので、自動化を検討する際は、ロボット制御のアプリケーションにも注目する必要があります。 基本的にロボットメーカー各社ではそれぞれのロボット対応のPRG編集ソフトウェアを開発しています。 しかし、こちらのソフトウェアは基本的にティーチングペンダントを用いて、ロボットに軌道や動作種別を教示していくものですので、それほど多機能なものではありません。 一度ティーチングしてしまえば数か月から数年変更が必要無いというような生産方式の場合は、上記のソフトウェアでも十分に対応可能と思いますが、高頻度で加工の仕様や形状の変更が起きる工程の自動化の場合は非常に対応が困難となってきます。 (ティーチングペンダントでのティーチングは、現場で実際の加工と突き合わせながら一つ一つ手でロボットを操作してPRGを作成していくので、一般的に非常に多くの工数が掛かります) 1.5 オフラインティーリングソフトウェアの活用 しかし現在、ロボットメーカー各社に対応している汎用の「オフラインティーチングソフトウェア」の開発が非常に進んできています。この「オフラインティーチングソフトウェア」の何が長所かというとPCを用いてシミュレーションを行いながらロボットの動作を決めていく事が出来る点です。 部品組み立て工程や運搬工程であれば、3D-CADを基にPC上で干渉回避を確認しながらロボットハンドの軌道を設定していけます。溶接工程であれば、加工物の3D-CADを基に溶接面の軌道や溶接条件などもほぼ自動でPRGを作成してくれます。 オフラインティーチングソフトウェアのメーカーも各社操作性を高める為に様々な工夫を施しており、まったく知識の無かった人でも数日間のトレーニングを受けて、実際に操作できる用になるレベルまで利便性は向上しています。今後もこの分野は更に進歩し、より簡単により早くにロボットティーチングが出来るようになってくると思われますので要チェックです。 2 まとめ 産業用ロボットを導入し最大限に効果を発揮する為には、 1. 既存作業の要素分解と各工程を自動化したときの経済効果を確認 2. 要素分解した作業毎の整備や定量化できていない要素を分析し、ムダを見つけ改善する 3. 自動化を前提とした最適なシステムの設計を行う。 4. 導入後の仕様方法や生産品種を検討した上でロボットティーチングの方法を決める。 5. 多品種生産やロボットティーチングの工数を削減したい場合は、オフラインティーチングソフトの導入も検討する。 上記により間接的にコスト改善効果や生産システム全体の見直しを図る事が肝要であると述べて来ました。人間の作業をロボットに置き換えるという局所的な見方ではなく、製造現場全体の改革のひとつの手段として産業用ロボットの導入を検討してみてはいかがでしょうか。 本記事ではロボットとはどのような種類があるのかを簡単にまとめてきました。他の記事では、中小企業がロボット化を実現している事例なども紹介しておりますから、ロボット化をお考えの方のきっとお役に立つことと思います。是非一度、ご覧になって下さい。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 自動化・ロボット化事例集 vol.2 本事例集は、全国の先進的な工場が取り組む「自動化・ロボット化」の事例をまとめたものとなります。 これから自動化・ロボット化に取組もうと考える皆さまに、 「工場にロボット・IoTを導入する」ための具体的なノウハウを、 事例を通して知っていただくことを目的に作成しました。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー https://smart-factory.funaisoken.co.jp/download/automation-robotization-examples-02/   [sc name="robot"][/sc]
工場自動化に向けて産業用ロボットの特徴を知る

工場自動化に向けて産業用ロボットの特徴を知る

2019.09.25

近年、ロボットはあらゆる分野において、その裾野を拡げてきております。 製造業においてもそれは例外ではなく、工場のロボット化、ファクトリーオートメーション(FA)など、人により呼称は様々ではありますが、着実にロボットは私たちの身近なものとなってきているようです。 このように言うと、「確かにロボット化は大手の自動車工場の生産ラインなどに活用されている例とかよく見るね。」とか、「投資資金が潤沢な企業では最近ロボット化が進んでいるようだね。」など、どうやら“大企業が省人化の為に投入するもの=産業用ロボット”と思われているのかもしれないようです。 しかし本来、産業用ロボットとはそのような大企業の大量生産に用いられるだけではなく、中小企業の町工場など、少量多品種の生産体制に用いられることで成果を大いに発揮するものです。 ところで、この“産業用ロボット”とは、一体よく聞く “ロボット”とどのような違いがあるのでしょうか? 産業用ロボットもロボットの内の一つでありますが、その用途は製造業の現場、工場などに限られます。 これから話を進めていく上で、定義を明確にする必要があると思いますので、以下に日本工業規格JISによる定義を示します。 1 産業用ロボットとは 日本工業規格JISによると、 「自動制御され、再プログラム可能で、多目的なマニピュレータであり、3軸以上でプログラム可能で、1か所に固定して又は移動機能をもって、産業自動化の用途に用いられるロボット。」 と、このように定義付けられています。 (※日本工業規格JIS 「JIS B 0134:2015 2.9,産業用ロボット」) このことからも、産業用ロボットは、形ではなく大まかな機能に焦点が当てられています。 しかしながら、この産業用ロボットは日々の技術的な進歩により、急速に進化を遂げてきています。 上記の定義によれば、産業用ロボットとは、同じ動作を繰り返し、それをずっと続けるための機械ではない様に受け止められたのではないでしょうか。 定義中にも「自動制御され、再プログラム可能で、多目的なマニピュレータ」と、あるように産業用ロボットは大企業のような大量生産に適したものであるとはどこにも書いていないのです。 むしろ、各種の作業をプログラミングによって実行でき、再プログラミング可能で多目的な機械というのは中小企業のような多品種少量の生産体制において活躍が期待されるロボットであると言えるでしょう。 2 産業用ロボットの種類は? 産業用ロボットとは製造業の現場、工場の自動化を助けるものであるということは分かってきました。 しかし、産業用ロボットと一口に語っても様々な形状、機能を持ったものがあります。 それらロボットには一つ一つ、機能を最大限に発揮する工程があるようです。どんな種類のロボットがあるのか見ていきましょう 現在、一般的に産業ロボットというと、以下のような4種類が基本のロボットの種類となるようです。順を追って簡単に説明していきます。 2.1 垂直多関節ロボット 現在、工場に投入されているロボットの中では最もポピュラーな産業用ロボットとなります。 この垂直多関節型のロボットは、人間の腕の間接に似ているロボットです。 軸の数が多いことにより、動作の自由度が非常に高いということが特徴の一つです。 このように自由度が高いことで対象とするワークを回り込んでの作業も得意です。 しかし、その多軸ということからも制御がやや複雑になります。 具体的な例としては、自動車の溶接工程、組立工程など、様々な用途で使われています。 2.2 水平多関節ロボット 水平(スカラ)方向の動きに特化したロボットです。 水平多関節型のロボットは別名としてスカラロボットと呼ばれることが多々あります。 このロボットの関節は回転軸が全て垂直に揃っているため、必ずアームの先端が水平面内を移動します。 このことから、平面的な作業に向いていると言えます。 ウエハの搬送や、基板を組み立てる際など用途は多岐に渡っております。 2.3 パラレルリンクロボット 多関節型のロボットは軸が直列に繋がっている型でした。 しかし、それに対してパラレルリンク型では並列(パラレル)に軸が配置されているロボットとなります。 可動範囲はやや狭いですが、それぞれの関節が直接、先端を制御することが可能となり、非常に高速で動けるという特徴があります。 一般的には、アームで先端部の位置を制御し、ラインで移動する部品の整列や、選定などの作業へ利用されることが多いロボットです。 直交(直角)座標ロボット 縦(X軸)、横(Y軸)、高さ(Z軸)の3方向を直交するスライドで実現するロボットです。 作業を施す範囲に対し、設置面積が広くなってしまいますが、スライド機構による動作のため、回転がないという特徴があります。 そのため、制御も比較的簡単です。 このロボットは重量物の搬送や、基板の組み立て、ネジ締めなどが使用用途として挙げられます。 3 産業用ロボットの用途とは? 産業用のロボットにはどのような種類があるのかということを紹介してきました。 これらロボットは工場のどのような工程をロボット化することが可能となってきているのでしょうか。 産業用ロボットが活用される代表的な5つのロボット化を紹介します。 3.1 溶接ロボット 溶接作業は高い熱や紫外線とヒュームが発生する過酷なものであり、産業用ロボットの需要の高い作業であります。 スポット溶接とアーク溶接を行うものがあり、これらの多くは多関節ロボットにより作業が行われるのが主流となっています。 3.2 組立ロボット 組立ロボットでは、どのような組立によるかという部分で最適なロボットの選定も異なってきます。 多関節ロボットだけでなく、双腕スカラロボットやパラレルリンクロボットなどが組立ロボットに適している場合もあり、ロボットの特性を考慮しつつ検討する必要性があります。 3.3 輸送ロボット 物流業界がEコマースの発展により、この搬送用ロボットが大きな役割を担ってきます。 搬送と一口に言っても、AGVのような自走式ロボットもあれば、多関節ロボットによる段ボールのパレタイジングやデパレタイジングなど幅広く種類が分かれます。 3.4 塗装ロボット 塗装工程のロボット化というと、自動車生産工場のロボット導入が有名です。 このような塗装では多くの作業が溶接同様に、多関節ロボットにより行われるのが主流のようです。 これは、塗装面の形状が一定でないということからも、自由度の高い多関節ロボットを使用することが最適であるということです。 3.5 検査ロボット これまで紹介してきたロボットはプログラミングにより動作制御されますが、ロボット自体には検査を行う装置はついておりません。 そのため、検査を行うためにカメラ・レーザー変位センサーなどアプリケーションをロボットに取り付けることによって検査を行えるようにする必要性があります。 つまり、検査工程には何かしらのロボットの目となるセンサーを取り付けてあげる必要があるということです。 本記事では、上記のような工程のロボット化を紹介してきましたが、ロボットの活用の仕方によっては今こちらを読まれている方の工場でも自動化できる工程は必ずあるはずです。 本サイトでは様々な中小企業のロボット化の事例を掲載しておりますので、そちらもご一読いただければ自社の自動化の参考にお役立ちすると思います。 4 まとめ 近年、技術は急速なスピードで進化しています。ここまで説明してきた産業用ロボットですが、一つに括ってしまうこともできます。 しかし、ロボットの種類やそれらが使われる場面というのは様々のようです。 本記事では、産業用ロボットの種類を初めに、工場のどのような工程を自動化することが出来るのかということを簡単に解説してきました。 このようなロボット化は大企業にしか関わらないと思われがちでありましたが、産業用ロボットの定義にもあるように、ロボットとは中小企業のような多品種少量生産の現場において最大限の効果を発揮します。 もう既に、着々とロボットを導入し始めている中小企業もいるようで、先行事例として注目を集めています。 「自社ではロボットを導入することはできないのではないか?」、「別にまだロボット化をしなくても大丈夫ではないか?」このような考え方をしていては、今押し寄せている自動化の流れに取り残されてしまいます。我々が考えなければいけないのは、「どの工程へ、どのロボットを、いつ導入しようか?」というこの3点だけです。 本サイトでは様々な中小企業のロボット導入事例を掲載しておりますから、きっと自社の自動化の参考になると思います。 是非ご覧になって下さいませ。 [clink url="https://smart-factory.funaisoken.co.jp/special/quality-improvement-through-inspection-quality-challenged-by-a-company-with-50-employees/"] [clink url="https://smart-factory.funaisoken.co.jp/special/a-town-factory-with-40-colleagues-performs-100-inspection-using-robots/"] [clink url="https://smart-factory.funaisoken.co.jp/special/robotization-of-stud-welding-process/"] [clink url="https://smart-factory.funaisoken.co.jp/special/robotization-of-attachment-and-detachment-work-in-multiple-processing-machines/"] ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 自動化・ロボット化事例集 vol.2 本事例集は、全国の先進的な工場が取り組む「自動化・ロボット化」の事例をまとめたものとなります。 これから自動化・ロボット化に取組もうと考える皆さまに、 「工場にロボット・IoTを導入する」ための具体的なノウハウを、 事例を通して知っていただくことを目的に作成しました。 ※こちらの事例集は、導入を検討している工場の担当者様限定となっております。 同業他社、メーカーや商社、SI事業者の方にはご送付をお断わりさせていただいております。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー https://smart-factory.funaisoken.co.jp/download/automation-robotization-examples-02/   [sc name="robot"][/sc] 近年、ロボットはあらゆる分野において、その裾野を拡げてきております。 製造業においてもそれは例外ではなく、工場のロボット化、ファクトリーオートメーション(FA)など、人により呼称は様々ではありますが、着実にロボットは私たちの身近なものとなってきているようです。 このように言うと、「確かにロボット化は大手の自動車工場の生産ラインなどに活用されている例とかよく見るね。」とか、「投資資金が潤沢な企業では最近ロボット化が進んでいるようだね。」など、どうやら“大企業が省人化の為に投入するもの=産業用ロボット”と思われているのかもしれないようです。 しかし本来、産業用ロボットとはそのような大企業の大量生産に用いられるだけではなく、中小企業の町工場など、少量多品種の生産体制に用いられることで成果を大いに発揮するものです。 ところで、この“産業用ロボット”とは、一体よく聞く “ロボット”とどのような違いがあるのでしょうか? 産業用ロボットもロボットの内の一つでありますが、その用途は製造業の現場、工場などに限られます。 これから話を進めていく上で、定義を明確にする必要があると思いますので、以下に日本工業規格JISによる定義を示します。 1 産業用ロボットとは 日本工業規格JISによると、 「自動制御され、再プログラム可能で、多目的なマニピュレータであり、3軸以上でプログラム可能で、1か所に固定して又は移動機能をもって、産業自動化の用途に用いられるロボット。」 と、このように定義付けられています。 (※日本工業規格JIS 「JIS B 0134:2015 2.9,産業用ロボット」) このことからも、産業用ロボットは、形ではなく大まかな機能に焦点が当てられています。 しかしながら、この産業用ロボットは日々の技術的な進歩により、急速に進化を遂げてきています。 上記の定義によれば、産業用ロボットとは、同じ動作を繰り返し、それをずっと続けるための機械ではない様に受け止められたのではないでしょうか。 定義中にも「自動制御され、再プログラム可能で、多目的なマニピュレータ」と、あるように産業用ロボットは大企業のような大量生産に適したものであるとはどこにも書いていないのです。 むしろ、各種の作業をプログラミングによって実行でき、再プログラミング可能で多目的な機械というのは中小企業のような多品種少量の生産体制において活躍が期待されるロボットであると言えるでしょう。 2 産業用ロボットの種類は? 産業用ロボットとは製造業の現場、工場の自動化を助けるものであるということは分かってきました。 しかし、産業用ロボットと一口に語っても様々な形状、機能を持ったものがあります。 それらロボットには一つ一つ、機能を最大限に発揮する工程があるようです。どんな種類のロボットがあるのか見ていきましょう 現在、一般的に産業ロボットというと、以下のような4種類が基本のロボットの種類となるようです。順を追って簡単に説明していきます。 2.1 垂直多関節ロボット 現在、工場に投入されているロボットの中では最もポピュラーな産業用ロボットとなります。 この垂直多関節型のロボットは、人間の腕の間接に似ているロボットです。 軸の数が多いことにより、動作の自由度が非常に高いということが特徴の一つです。 このように自由度が高いことで対象とするワークを回り込んでの作業も得意です。 しかし、その多軸ということからも制御がやや複雑になります。 具体的な例としては、自動車の溶接工程、組立工程など、様々な用途で使われています。 2.2 水平多関節ロボット 水平(スカラ)方向の動きに特化したロボットです。 水平多関節型のロボットは別名としてスカラロボットと呼ばれることが多々あります。 このロボットの関節は回転軸が全て垂直に揃っているため、必ずアームの先端が水平面内を移動します。 このことから、平面的な作業に向いていると言えます。 ウエハの搬送や、基板を組み立てる際など用途は多岐に渡っております。 2.3 パラレルリンクロボット 多関節型のロボットは軸が直列に繋がっている型でした。 しかし、それに対してパラレルリンク型では並列(パラレル)に軸が配置されているロボットとなります。 可動範囲はやや狭いですが、それぞれの関節が直接、先端を制御することが可能となり、非常に高速で動けるという特徴があります。 一般的には、アームで先端部の位置を制御し、ラインで移動する部品の整列や、選定などの作業へ利用されることが多いロボットです。 直交(直角)座標ロボット 縦(X軸)、横(Y軸)、高さ(Z軸)の3方向を直交するスライドで実現するロボットです。 作業を施す範囲に対し、設置面積が広くなってしまいますが、スライド機構による動作のため、回転がないという特徴があります。 そのため、制御も比較的簡単です。 このロボットは重量物の搬送や、基板の組み立て、ネジ締めなどが使用用途として挙げられます。 3 産業用ロボットの用途とは? 産業用のロボットにはどのような種類があるのかということを紹介してきました。 これらロボットは工場のどのような工程をロボット化することが可能となってきているのでしょうか。 産業用ロボットが活用される代表的な5つのロボット化を紹介します。 3.1 溶接ロボット 溶接作業は高い熱や紫外線とヒュームが発生する過酷なものであり、産業用ロボットの需要の高い作業であります。 スポット溶接とアーク溶接を行うものがあり、これらの多くは多関節ロボットにより作業が行われるのが主流となっています。 3.2 組立ロボット 組立ロボットでは、どのような組立によるかという部分で最適なロボットの選定も異なってきます。 多関節ロボットだけでなく、双腕スカラロボットやパラレルリンクロボットなどが組立ロボットに適している場合もあり、ロボットの特性を考慮しつつ検討する必要性があります。 3.3 輸送ロボット 物流業界がEコマースの発展により、この搬送用ロボットが大きな役割を担ってきます。 搬送と一口に言っても、AGVのような自走式ロボットもあれば、多関節ロボットによる段ボールのパレタイジングやデパレタイジングなど幅広く種類が分かれます。 3.4 塗装ロボット 塗装工程のロボット化というと、自動車生産工場のロボット導入が有名です。 このような塗装では多くの作業が溶接同様に、多関節ロボットにより行われるのが主流のようです。 これは、塗装面の形状が一定でないということからも、自由度の高い多関節ロボットを使用することが最適であるということです。 3.5 検査ロボット これまで紹介してきたロボットはプログラミングにより動作制御されますが、ロボット自体には検査を行う装置はついておりません。 そのため、検査を行うためにカメラ・レーザー変位センサーなどアプリケーションをロボットに取り付けることによって検査を行えるようにする必要性があります。 つまり、検査工程には何かしらのロボットの目となるセンサーを取り付けてあげる必要があるということです。 本記事では、上記のような工程のロボット化を紹介してきましたが、ロボットの活用の仕方によっては今こちらを読まれている方の工場でも自動化できる工程は必ずあるはずです。 本サイトでは様々な中小企業のロボット化の事例を掲載しておりますので、そちらもご一読いただければ自社の自動化の参考にお役立ちすると思います。 4 まとめ 近年、技術は急速なスピードで進化しています。ここまで説明してきた産業用ロボットですが、一つに括ってしまうこともできます。 しかし、ロボットの種類やそれらが使われる場面というのは様々のようです。 本記事では、産業用ロボットの種類を初めに、工場のどのような工程を自動化することが出来るのかということを簡単に解説してきました。 このようなロボット化は大企業にしか関わらないと思われがちでありましたが、産業用ロボットの定義にもあるように、ロボットとは中小企業のような多品種少量生産の現場において最大限の効果を発揮します。 もう既に、着々とロボットを導入し始めている中小企業もいるようで、先行事例として注目を集めています。 「自社ではロボットを導入することはできないのではないか?」、「別にまだロボット化をしなくても大丈夫ではないか?」このような考え方をしていては、今押し寄せている自動化の流れに取り残されてしまいます。我々が考えなければいけないのは、「どの工程へ、どのロボットを、いつ導入しようか?」というこの3点だけです。 本サイトでは様々な中小企業のロボット導入事例を掲載しておりますから、きっと自社の自動化の参考になると思います。 是非ご覧になって下さいませ。 [clink url="https://smart-factory.funaisoken.co.jp/special/quality-improvement-through-inspection-quality-challenged-by-a-company-with-50-employees/"] [clink url="https://smart-factory.funaisoken.co.jp/special/a-town-factory-with-40-colleagues-performs-100-inspection-using-robots/"] [clink url="https://smart-factory.funaisoken.co.jp/special/robotization-of-stud-welding-process/"] [clink url="https://smart-factory.funaisoken.co.jp/special/robotization-of-attachment-and-detachment-work-in-multiple-processing-machines/"] ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 自動化・ロボット化事例集 vol.2 本事例集は、全国の先進的な工場が取り組む「自動化・ロボット化」の事例をまとめたものとなります。 これから自動化・ロボット化に取組もうと考える皆さまに、 「工場にロボット・IoTを導入する」ための具体的なノウハウを、 事例を通して知っていただくことを目的に作成しました。 ※こちらの事例集は、導入を検討している工場の担当者様限定となっております。 同業他社、メーカーや商社、SI事業者の方にはご送付をお断わりさせていただいております。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー https://smart-factory.funaisoken.co.jp/download/automation-robotization-examples-02/   [sc name="robot"][/sc]

産業用ロボットとは?最新動向からロボットの違いを知る

2019.09.17

近年、「ロボット」という言葉は様々な業界において幅広く聞かれるようになってきました。 そのせいか、ロボットの定義は明確に定まっている訳ではなく所々で色々な定義がされているようです。 そんな中、この「ロボット」という言葉の一つの定義として、“人の代わりに何等かの作業を自律的に行う装置、もしくは機械のこと。”とあります。 このように、どのような用途でロボットが使用されるものかという大まかに定義づけがある他、学術的なロボットの定義の一つとしては、日本ロボット学会が編纂したロボット工学ハンドブックで紹介されているものとして、“自動性、知能性、個体性、半機械半人間性、作業性、汎用性、情報性、柔軟性、有限性、移動性を持つもの”だと言われることもあります。 我々の日常の業務は多くの産業において“人”によって行われているため、この「ロボット」はどのような産業においても遅かれ早かれ関係を持つものとなるだろうことが予想されます。 近年では、日本の人口ピラミッドの推移からも考察できるように、国内の人口は減少傾向であることは明確です。 さらにそれに加え、人口の分布としては高齢者の割合は増加傾向でありながら、若い世代の割合は減少するということが予測されております。 このことから、 国内の人口は減少傾向にあるということ 人口分布は高齢者人口が多くなっていくということ(=国内人口における生産年齢人口の割合が低下するということ) 上記のことが容易に予測できます。 もう一度、「ロボット」の定義の一つを下記に示してみます。 ロボットとは、“人の代わりに何等かの作業を自律的に行う装置、もしくは機械のこと。” 世界的な人口は増加傾向にあります。 しかしながら、一方で日本国内の人口は減少傾向にあります。 そのような環境下において我々に代わって作業を代替してくれる装置・機械である「ロボット」の需要は日に日に増していくことでしょう。 以下のレポートにおいても、中小企業の全体的な方向性としては、社内のシニア、ベテラン人材の継続確保よりも、自動機やロボットによる自動化・省人化のポイントが増加しているようです。 https://www.meti.go.jp/report/whitepaper/mono/2018/honbun_pdf/pdf/honbun01_01_02.pdf これらのことからも、ロボットへの期待は既に高まっていることが覗えます。 では、このような「ロボット」、多くの産業から耳にするようになっておりますが、具体的にはどのような分野においてロボット化は進んでいるのでしょうか? ロボット化が進む分野は? 産業用ロボット BtoBにおけるロボットとしては産業用ロボットが代表的です。 この産業用ロボットという括りではざっくりとしすぎているため、以下の様に分類してみました。 農業用 農業のロボット化というと、スマート農業という言葉が最近では聞かれるようになってきています。スマート農業を牽引させている企業としては、クボタなどが代表的な企業となります。農業人口が減少している中で、クボタの開発した無人コンバインや、無人田植え機は高齢者の農業を手助けするだけでなく、生産年齢人口が減少している中で大きな貢献が期待されています。 林業用 林業用のロボットとしては、自動枝払い機や下草刈りロボットなどが挙げられます。木にロボットを装着するだけで、自動でロボットが枝を切断してくれるロボットなどが代表的な例です。高い木などの切断が困難である中で、林業者の手助けをしてくれるロボットです。草刈りロボットはルンバのような形状で、自動で草を刈り人の作業を手助けしてくれています。 工業用 産業用のロボットというと、日本の製造業から考えていくと工業のロボット化を表すことが多いかもしれません。工業用ロボットは、アームロボットであれば、溶接の工程に用いられたり、組立工程において用いられたりと使用の用途は様々です。このようなロボット化は減少している生産年齢人口に対応するだけでなく、過酷作業を低減させることや、中小企業にとっては採用面でも強化が期待できるようです。 商業用 マネキン型ロボット「Palette」は人感センサーを備え、人が近づくとさまざまなポーズを披露するマネキン型ロボットです。ファッション業界においてこれらのロボットが現在では活用されているようです。また、物流クライシスや物流事業の危機が囁かれ、更なる宅配ニーズが急激に増加するなかで、自動運搬ロボットは少子高齢化、深刻な人手不足にみまわれている状況における一つの打開策として期待が持たれています。 サービス用ロボット サービス産業におけるロボット化としては、看護ロボットにおいてはMoxiなどの看護師を支援するロボットがあります。また、ビルや公共建物清掃などを行うロボットや福祉業界においても近年需要が高まっています。このようなことから、サービス分野においてもロボット化が急速に進むことが予測されています。 ペットロボット また、産業用ロボットやサービス用ロボットは主に人間が行っている作業を代替するものがほとんどでありました。しかし、ペットロボットは人間にセラピー効果を与えることへ期待が持たれているものです。このようなロボットの代表としては、SONYにより開発されたAIBOや、バロなどが有名です。これらロボットの効果としては、うつ状態の効果を改善させる心理的効果、ストレス低減といった生理的効果、発話の増加による社会的効果増進などの効果に寄与するようです。   今回の記事では、上記のように分類してみましたが、人それぞれで分類の方法は異なるでしょう。 これは、ロボットという定義が場所によって人によって状況によって変わってくるものであるから避けられないことかもしれません。 産業用ロボットとは? 「ロボット」と一口に言っても様々な種類があることをご紹介してきました。 そのような中で、製造業において注目したロボット化とは、産業のロボット化にあたります。 この日本のお家芸であったロボットに世界が追い付こうと、ドイツではインダストリー4.0、アメリカではインダストリー・インターネット・コンソーシアムというように世界的にもロボット化が進んでいます。 しかし、近年では中小企業においても産業のロボット化は急速に進んできています。 このような産業のロボット化、その中でも工業のロボット化に注目が集まっている理由としては、顧客のニーズが多様化していることもありますし、それに加え、これから課題となる生産人口の減少にも対応することが可能となるからでしょう。 そもそも、この産業ロボットの定義はどのようなものなのかというと、日本工業規格(JIS)によれば、「自動制御によるマニピュレーション機能または移動機能をもち、各種の作業をプログラムによって実行できる、産業に使用される機械」と定義されています。 そして、このような産業のロボット化とは大企業が大きな投資をすることにより実現することが可能なものだと考えられておりました。 しかし、近年では資金が大企業のように潤沢ではなく、規模もそれほどではないような中小企業においてもロボット化が可能となってきております。 このように、中小企業のロボット化は大企業のそれとは異なります。 中小企業のロボット化は ロボットによる熟練作業の代替 熟練作業員は更なる付加価値の高い業務へと移行可能に ロボットによる3K業務の代替 ロボット導入により、若い人材を採用可能に 中小企業のロボット化は大企業のそれとは異なり、上記のようなメリットを享受することに期待がもてることになりそうです。 【産業用ロボット例】例えば垂直多関節ロボットとは? 垂直多関節ロボットについてもう少し具体的に用途や事例を紹介したいと思います。 次に垂直多関節ロボットは、「6軸ロボット」や「5軸ロボット」とも呼ばれています。複数個の間接を持つロボットという意味で多関節ロボットと呼称されています。 ロボットは軸が多いほど自由に動けます。それぞれの関節がほぼ360°の動きに対応しており、その関節の動きの組み合わせにより様々な動きを実現出来ます。 ここで言う関節にはサーボモータが組み込まれており、関節数はサーボモータの数と同じです。つまりロボットとはサーボモータの集合体なのです。 そして、このサーボモータの性能と複数のサーボモーターを同時に制御するソフトウェアの合体したものが産業用ロボットです。 さらにロボットハンドの先端に用途に合わせて様々なハンドを装着する事が出来ます。このハンドにはモノを掴んだり、加工したり、形状を測定したり、塗装したり、溶接したりと、色々な種類があり、その組み合わせと使い方は無限大の可能性を秘めてます。 その汎用性の高さ故に、様々な分野で使用されており、世界中のものづくりに変革をもたらしています。 代表的な使用方法 1、バラ積みピッキング 垂直多関節ロボットやパラレルリンクロボットにカメラを追加して、ばらばらに置かれている製品や材料の向きや角度を判別してロボットが自動でピッキング(把持する)する機構です。 機械加工をはじめ食品、倉庫等様々な分野で利用されています。 2、溶接 ロボットハンドに溶接トーチを持たせて自動で溶接を行います。 TIG,MIG,MAG,YEG様々な溶接にも対応可能です。特殊な肉盛り溶接やアルミ溶接など難易度の高い溶接にも対応しており、現在もメーカーから様々なロボット溶接用トーチが開発販売されています。 3、研磨ロボット ハンドにて製品や材料をピッキングし、研磨機等に押し付ける事で研磨を行う工程に用いられています。 ロボットは力加減が出来ないモノなのですが、ハンドに力覚センサーを初めとするセンサーを用いる事で研磨機への押し付け強さ等もコントロールする事が出来、従来では研磨の職人さんしか出来なかった分野への利用が進んでいます。 鋳物部品のバリ取りから眼鏡レンズの研磨など粗いものから精密なものまで幅広く使用されてます。 4、塗装 塗装についても非常に自動化が進んでいる分野です。塗装も非常に高い技術が必要な加工なのですが、ロボットでの塗装も非常に広く利用されてます。 例えば自動車ですが、基本的に全てロボットで塗ってます。 携帯電話のケースやOA機器等のケース等の量産品も多くの場合ロボットで塗られています。逆に職人さんが手吹きで塗装しているモノの方が少なくなってきていると思います。 5、検査 検査といえば、検査専用用カメラですが、ここにもロボットを用いられるケースが増えてきています。 なぜなら、検査用カメラは動く事が出来ない為です。立体物の多面を検査する為には、立体物を動かす必要があるからです。従来の検査方法では、人間が製品や材料を動かして多方向からカメラで撮像、検査を行う必要がありました。検査用カメラも非常に高価なものなので、複数個のカメラを用いて多方向から同時検出する事が現実的に不可能でした。そこでロボットを活用します。 カメラは一つでロボットが検査する面をカメラにむけて撮像、検査、面を変えて検査という方法や、ロボットハンドにカメラを持たせて立体物の周囲全方向から撮像、検査を実施する場合もあります。 特に非常に大きなモノや重たいモノの検査に重宝されています。 このように様々な分野に垂直多関節ロボットは利用されています。何にでも利用出来る反面、用途や環境に合わせたカスタマイズをしっかりと行う必要があるのが垂直多関節ロボットであり、このカスタマイズを如何に現場に最適なモノにするかが導入の最も大きなポイントです。 垂直多関節ロボットの導入を検討している方は、しっかりと目的・用途・環境等を吟味した上でロボットのカスタマイズする事をおすすめします。 まとめ このように近年では、様々な業界においてロボットが用いられるようになってきています。 背景には将来的な人口減少により生産年齢人口が減少することや、顧客のニーズを満たすようなロボットを製造することが出来るまでに技術が発展していることなどが挙げられます。 その中で産業用ロボットやサービス用ロボット、ペットロボットなど種類・業界は多岐に渡って活躍していくことでしょう。 色々な環境においてロボット化が進んでいることから、ロボットの定義は場所や人、状況によって様々なものとなっているようです。 また、「ロボット」は日本のお家芸であり常に世界の先陣を走っていました。 しかし、それに追いつこうと近頃ではインダストリー4.0やインダストリー・インターネット・コンソーシアム(IIC)など工場の自動化に注目が非常に集まってきています。 近年、中小企業でもこのような工場の自動化の事例は急速に増えてきています。 これはロボットがプログラミングによって動作を変更することができることの他、ロボットに付随するアプリケーションの発展があり、多品種少量に対応することが出来るようになった事も要因として挙げられます。 本記事ではロボットとはどのような種類があるのかを簡単にまとめてきました。 他の記事では、中小企業がロボット化を実現している事例なども紹介しておりますから、ロボット化をお考えの方のきっとお役に立つことと思います。 是非一度、ご覧になって下さい。 [clink url="https://smart-factory.funaisoken.co.jp/special/quality-improvement-through-inspection-quality-challenged-by-a-company-with-50-employees/"] [clink url="https://smart-factory.funaisoken.co.jp/special/a-town-factory-with-40-colleagues-performs-100-inspection-using-robots/"] [clink url="https://smart-factory.funaisoken.co.jp/special/robotization-of-stud-welding-process/"] [clink url="https://smart-factory.funaisoken.co.jp/special/robotization-of-attachment-and-detachment-work-in-multiple-processing-machines/"] ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 自動化・ロボット化事例集 vol.2 本事例集は、全国の先進的な工場が取り組む「自動化・ロボット化」の事例をまとめたものとなります。 これから自動化・ロボット化に取組もうと考える皆さまに、 「工場にロボット・IoTを導入する」ための具体的なノウハウを、 事例を通して知っていただくことを目的に作成しました。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー https://smart-factory.funaisoken.co.jp/download/automation-robotization-examples-02/ 近年、「ロボット」という言葉は様々な業界において幅広く聞かれるようになってきました。 そのせいか、ロボットの定義は明確に定まっている訳ではなく所々で色々な定義がされているようです。 そんな中、この「ロボット」という言葉の一つの定義として、“人の代わりに何等かの作業を自律的に行う装置、もしくは機械のこと。”とあります。 このように、どのような用途でロボットが使用されるものかという大まかに定義づけがある他、学術的なロボットの定義の一つとしては、日本ロボット学会が編纂したロボット工学ハンドブックで紹介されているものとして、“自動性、知能性、個体性、半機械半人間性、作業性、汎用性、情報性、柔軟性、有限性、移動性を持つもの”だと言われることもあります。 我々の日常の業務は多くの産業において“人”によって行われているため、この「ロボット」はどのような産業においても遅かれ早かれ関係を持つものとなるだろうことが予想されます。 近年では、日本の人口ピラミッドの推移からも考察できるように、国内の人口は減少傾向であることは明確です。 さらにそれに加え、人口の分布としては高齢者の割合は増加傾向でありながら、若い世代の割合は減少するということが予測されております。 このことから、 国内の人口は減少傾向にあるということ 人口分布は高齢者人口が多くなっていくということ(=国内人口における生産年齢人口の割合が低下するということ) 上記のことが容易に予測できます。 もう一度、「ロボット」の定義の一つを下記に示してみます。 ロボットとは、“人の代わりに何等かの作業を自律的に行う装置、もしくは機械のこと。” 世界的な人口は増加傾向にあります。 しかしながら、一方で日本国内の人口は減少傾向にあります。 そのような環境下において我々に代わって作業を代替してくれる装置・機械である「ロボット」の需要は日に日に増していくことでしょう。 以下のレポートにおいても、中小企業の全体的な方向性としては、社内のシニア、ベテラン人材の継続確保よりも、自動機やロボットによる自動化・省人化のポイントが増加しているようです。 https://www.meti.go.jp/report/whitepaper/mono/2018/honbun_pdf/pdf/honbun01_01_02.pdf これらのことからも、ロボットへの期待は既に高まっていることが覗えます。 では、このような「ロボット」、多くの産業から耳にするようになっておりますが、具体的にはどのような分野においてロボット化は進んでいるのでしょうか? ロボット化が進む分野は? 産業用ロボット BtoBにおけるロボットとしては産業用ロボットが代表的です。 この産業用ロボットという括りではざっくりとしすぎているため、以下の様に分類してみました。 農業用 農業のロボット化というと、スマート農業という言葉が最近では聞かれるようになってきています。スマート農業を牽引させている企業としては、クボタなどが代表的な企業となります。農業人口が減少している中で、クボタの開発した無人コンバインや、無人田植え機は高齢者の農業を手助けするだけでなく、生産年齢人口が減少している中で大きな貢献が期待されています。 林業用 林業用のロボットとしては、自動枝払い機や下草刈りロボットなどが挙げられます。木にロボットを装着するだけで、自動でロボットが枝を切断してくれるロボットなどが代表的な例です。高い木などの切断が困難である中で、林業者の手助けをしてくれるロボットです。草刈りロボットはルンバのような形状で、自動で草を刈り人の作業を手助けしてくれています。 工業用 産業用のロボットというと、日本の製造業から考えていくと工業のロボット化を表すことが多いかもしれません。工業用ロボットは、アームロボットであれば、溶接の工程に用いられたり、組立工程において用いられたりと使用の用途は様々です。このようなロボット化は減少している生産年齢人口に対応するだけでなく、過酷作業を低減させることや、中小企業にとっては採用面でも強化が期待できるようです。 商業用 マネキン型ロボット「Palette」は人感センサーを備え、人が近づくとさまざまなポーズを披露するマネキン型ロボットです。ファッション業界においてこれらのロボットが現在では活用されているようです。また、物流クライシスや物流事業の危機が囁かれ、更なる宅配ニーズが急激に増加するなかで、自動運搬ロボットは少子高齢化、深刻な人手不足にみまわれている状況における一つの打開策として期待が持たれています。 サービス用ロボット サービス産業におけるロボット化としては、看護ロボットにおいてはMoxiなどの看護師を支援するロボットがあります。また、ビルや公共建物清掃などを行うロボットや福祉業界においても近年需要が高まっています。このようなことから、サービス分野においてもロボット化が急速に進むことが予測されています。 ペットロボット また、産業用ロボットやサービス用ロボットは主に人間が行っている作業を代替するものがほとんどでありました。しかし、ペットロボットは人間にセラピー効果を与えることへ期待が持たれているものです。このようなロボットの代表としては、SONYにより開発されたAIBOや、バロなどが有名です。これらロボットの効果としては、うつ状態の効果を改善させる心理的効果、ストレス低減といった生理的効果、発話の増加による社会的効果増進などの効果に寄与するようです。   今回の記事では、上記のように分類してみましたが、人それぞれで分類の方法は異なるでしょう。 これは、ロボットという定義が場所によって人によって状況によって変わってくるものであるから避けられないことかもしれません。 産業用ロボットとは? 「ロボット」と一口に言っても様々な種類があることをご紹介してきました。 そのような中で、製造業において注目したロボット化とは、産業のロボット化にあたります。 この日本のお家芸であったロボットに世界が追い付こうと、ドイツではインダストリー4.0、アメリカではインダストリー・インターネット・コンソーシアムというように世界的にもロボット化が進んでいます。 しかし、近年では中小企業においても産業のロボット化は急速に進んできています。 このような産業のロボット化、その中でも工業のロボット化に注目が集まっている理由としては、顧客のニーズが多様化していることもありますし、それに加え、これから課題となる生産人口の減少にも対応することが可能となるからでしょう。 そもそも、この産業ロボットの定義はどのようなものなのかというと、日本工業規格(JIS)によれば、「自動制御によるマニピュレーション機能または移動機能をもち、各種の作業をプログラムによって実行できる、産業に使用される機械」と定義されています。 そして、このような産業のロボット化とは大企業が大きな投資をすることにより実現することが可能なものだと考えられておりました。 しかし、近年では資金が大企業のように潤沢ではなく、規模もそれほどではないような中小企業においてもロボット化が可能となってきております。 このように、中小企業のロボット化は大企業のそれとは異なります。 中小企業のロボット化は ロボットによる熟練作業の代替 熟練作業員は更なる付加価値の高い業務へと移行可能に ロボットによる3K業務の代替 ロボット導入により、若い人材を採用可能に 中小企業のロボット化は大企業のそれとは異なり、上記のようなメリットを享受することに期待がもてることになりそうです。 【産業用ロボット例】例えば垂直多関節ロボットとは? 垂直多関節ロボットについてもう少し具体的に用途や事例を紹介したいと思います。 次に垂直多関節ロボットは、「6軸ロボット」や「5軸ロボット」とも呼ばれています。複数個の間接を持つロボットという意味で多関節ロボットと呼称されています。 ロボットは軸が多いほど自由に動けます。それぞれの関節がほぼ360°の動きに対応しており、その関節の動きの組み合わせにより様々な動きを実現出来ます。 ここで言う関節にはサーボモータが組み込まれており、関節数はサーボモータの数と同じです。つまりロボットとはサーボモータの集合体なのです。 そして、このサーボモータの性能と複数のサーボモーターを同時に制御するソフトウェアの合体したものが産業用ロボットです。 さらにロボットハンドの先端に用途に合わせて様々なハンドを装着する事が出来ます。このハンドにはモノを掴んだり、加工したり、形状を測定したり、塗装したり、溶接したりと、色々な種類があり、その組み合わせと使い方は無限大の可能性を秘めてます。 その汎用性の高さ故に、様々な分野で使用されており、世界中のものづくりに変革をもたらしています。 代表的な使用方法 1、バラ積みピッキング 垂直多関節ロボットやパラレルリンクロボットにカメラを追加して、ばらばらに置かれている製品や材料の向きや角度を判別してロボットが自動でピッキング(把持する)する機構です。 機械加工をはじめ食品、倉庫等様々な分野で利用されています。 2、溶接 ロボットハンドに溶接トーチを持たせて自動で溶接を行います。 TIG,MIG,MAG,YEG様々な溶接にも対応可能です。特殊な肉盛り溶接やアルミ溶接など難易度の高い溶接にも対応しており、現在もメーカーから様々なロボット溶接用トーチが開発販売されています。 3、研磨ロボット ハンドにて製品や材料をピッキングし、研磨機等に押し付ける事で研磨を行う工程に用いられています。 ロボットは力加減が出来ないモノなのですが、ハンドに力覚センサーを初めとするセンサーを用いる事で研磨機への押し付け強さ等もコントロールする事が出来、従来では研磨の職人さんしか出来なかった分野への利用が進んでいます。 鋳物部品のバリ取りから眼鏡レンズの研磨など粗いものから精密なものまで幅広く使用されてます。 4、塗装 塗装についても非常に自動化が進んでいる分野です。塗装も非常に高い技術が必要な加工なのですが、ロボットでの塗装も非常に広く利用されてます。 例えば自動車ですが、基本的に全てロボットで塗ってます。 携帯電話のケースやOA機器等のケース等の量産品も多くの場合ロボットで塗られています。逆に職人さんが手吹きで塗装しているモノの方が少なくなってきていると思います。 5、検査 検査といえば、検査専用用カメラですが、ここにもロボットを用いられるケースが増えてきています。 なぜなら、検査用カメラは動く事が出来ない為です。立体物の多面を検査する為には、立体物を動かす必要があるからです。従来の検査方法では、人間が製品や材料を動かして多方向からカメラで撮像、検査を行う必要がありました。検査用カメラも非常に高価なものなので、複数個のカメラを用いて多方向から同時検出する事が現実的に不可能でした。そこでロボットを活用します。 カメラは一つでロボットが検査する面をカメラにむけて撮像、検査、面を変えて検査という方法や、ロボットハンドにカメラを持たせて立体物の周囲全方向から撮像、検査を実施する場合もあります。 特に非常に大きなモノや重たいモノの検査に重宝されています。 このように様々な分野に垂直多関節ロボットは利用されています。何にでも利用出来る反面、用途や環境に合わせたカスタマイズをしっかりと行う必要があるのが垂直多関節ロボットであり、このカスタマイズを如何に現場に最適なモノにするかが導入の最も大きなポイントです。 垂直多関節ロボットの導入を検討している方は、しっかりと目的・用途・環境等を吟味した上でロボットのカスタマイズする事をおすすめします。 まとめ このように近年では、様々な業界においてロボットが用いられるようになってきています。 背景には将来的な人口減少により生産年齢人口が減少することや、顧客のニーズを満たすようなロボットを製造することが出来るまでに技術が発展していることなどが挙げられます。 その中で産業用ロボットやサービス用ロボット、ペットロボットなど種類・業界は多岐に渡って活躍していくことでしょう。 色々な環境においてロボット化が進んでいることから、ロボットの定義は場所や人、状況によって様々なものとなっているようです。 また、「ロボット」は日本のお家芸であり常に世界の先陣を走っていました。 しかし、それに追いつこうと近頃ではインダストリー4.0やインダストリー・インターネット・コンソーシアム(IIC)など工場の自動化に注目が非常に集まってきています。 近年、中小企業でもこのような工場の自動化の事例は急速に増えてきています。 これはロボットがプログラミングによって動作を変更することができることの他、ロボットに付随するアプリケーションの発展があり、多品種少量に対応することが出来るようになった事も要因として挙げられます。 本記事ではロボットとはどのような種類があるのかを簡単にまとめてきました。 他の記事では、中小企業がロボット化を実現している事例なども紹介しておりますから、ロボット化をお考えの方のきっとお役に立つことと思います。 是非一度、ご覧になって下さい。 [clink url="https://smart-factory.funaisoken.co.jp/special/quality-improvement-through-inspection-quality-challenged-by-a-company-with-50-employees/"] [clink url="https://smart-factory.funaisoken.co.jp/special/a-town-factory-with-40-colleagues-performs-100-inspection-using-robots/"] [clink url="https://smart-factory.funaisoken.co.jp/special/robotization-of-stud-welding-process/"] [clink url="https://smart-factory.funaisoken.co.jp/special/robotization-of-attachment-and-detachment-work-in-multiple-processing-machines/"] ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 自動化・ロボット化事例集 vol.2 本事例集は、全国の先進的な工場が取り組む「自動化・ロボット化」の事例をまとめたものとなります。 これから自動化・ロボット化に取組もうと考える皆さまに、 「工場にロボット・IoTを導入する」ための具体的なノウハウを、 事例を通して知っていただくことを目的に作成しました。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー https://smart-factory.funaisoken.co.jp/download/automation-robotization-examples-02/
溶接の自動化・ロボット化とは?溶接の種類と自動化のポイントを解説

溶接ロボットで行う自動化の方法とは?

2019.08.29

▼無料ダウンロードはこちらをクリック 1 はじめに 溶接工程の自動化、工場内物流における搬送工程の自動化、加工機へのワーク投入・取り出 しの自動化… 近年の技術革新により、これらが実現可能な時代になりました。 それも、資金が潤沢にある大企業のみならず、規模がそこまで大きくない工場も当てはまります。 しかし、これまで「自動化」や用途の広い「ロボット」に触れてこなかったが故に、 「どのようにしたらいいかわからない」 「誰に相談すればいいのかわからない」 このようなお悩みを抱える方は多いのではないでしょうか。 実は、「自動化」や「溶接ロボット」の導入により、「労働者数は増加し、業績は好調になり、生産性も高くなる」という研究が発表されています。 https://gigazine.net/news/20190711-robots-and-firms/ この研究の結論として、「産業用溶接ロボットを導入した製造業をはじめとする企業はその業績が好調で労働者も増加である一方、導入していない企業はその生産高はマイナスで、ハイテク企業に太刀打ちできずに雇用状況も悪化する」とされています。 つまり、 「どのようにしたらいいかわからない」 「誰に相談すればいいのかわからない」 という状態のまま躊躇していても、事態は好転するどころか、じわじわと悪化していく一方なのです。 ではどうすればいいか。 答えは単純で、「今すぐ自動化、ロボットの導入」を検討すればいいのです。 この記事では、「中小規模の製造業が、溶接の自動化・溶接ロボット導入をするために関わる情報」を掲載していますから、「自動化、溶接ロボットの導入」を検討し始めの役に立つことでしょう。 この記事では、 ・種々の溶接に最適な溶接ロボット装置の種類 ・溶接の自動化、ロボット化によるメリット を知ることができます。 これらを知ることで、 ・「自分たちの工場での自動化・ロボット化はどんな感じになるのか?」 ・「いざ、自動化・溶接ロボットの導入をするときに、溶接ロボットの機種があり過ぎて分からない!」 といったモヤモヤを解消し、工場経営の改善につながることでしょう。 最後の方では、様々な製品を取り扱う工場が自動化・溶接ロボットを導入することで成し遂げた成功事例について紹介しています。 ぜひ最後までお読みいただき、工場経営の改善にお役立てください。 2 溶接の自動化・ロボット化とは? 溶接作業をはじめとする製造業の多くは作業者の勘や技術に頼ることが多く、いわゆる職人的な作業となってしまうため、品質のばらつきが大きくなりがちです。また、溶接作業には強烈な紫外線やヒュームが発生するため、作業者にとって過酷な作業になります。 このように、属人的になりがちで過酷な溶接作業において、溶接ロボットを適用し自動化を図る事で、 品質を一定の基準に保つ 生産管理の効率化 人手不足の解消 作業環境の改善 などを実現することが可能です。 3 溶接によって変わる最適な溶接ロボット 溶接ロボットによる溶接の自動化は、大きく「スポット溶接」と「アーク溶接」の2つに分けられています。 スポット溶接は自動車の車体溶接などで多く使用されており、比較的大型な溶接ロボットが用いられます。 アーク溶接ロボットは鉄骨フレームをはじめ比較的細かい製品の溶接に使用されることも多く、設置される溶接ロボット機器のサイズも小型になります。 このように製造業の溶接ロボットによる自動化は溶接の方法によってどのような種類が最適であり、かつロボット自体がどれくらいの面積を占めるのかということも異なっていきます。 本項では現在ある溶接の作業において、どの溶接ロボットが適するのかという水平的な目線で、それぞれの溶接方法により溶接ロボットの大きさが異なることを解説しました。 次項では、溶接作業が自動化へと進化している背景について、それぞれのメリットとデメリットを基にして解説していきます。   4 溶接作業はどのように進化してきたのか? 近年、製造業における工場のロボット化が著しく進み、生産性が向上しています。 また、その対象は大企業だけでなく、中小企業にも拡がってきています。 溶接の方法は大きく分類すると下記のような進化を遂げてきています。 手溶接(被覆アーク溶接) → 半自動溶接(半自動アーク溶接)→ 自動溶接(ロボット溶接) 自動溶接(ロボット溶接)を理解するには、それ以前の背景を辿ることが必要不可欠です。 本項では、溶接の発展を追うごとに何故進化の必要性があるのかということを、それぞれの方法に対してメリット、デメリットを列挙しながら解説します。 そちらを見ていただくと何故溶接工程がロボット化を遂げたのかがわかるかと思います。 以下の表は、各作業方法のメリット・デメリットを簡潔にまとめたものになります。 ティーチングの種類 メリット デメリット 手溶接 ①設備や溶接棒が小型かつ安価である。 ②手作業のため、素材・構造に左右されない。 ③シールド効果を得ることができる。 ①スラグ除去や、溶着効率が低い。 ②品質にバラツキが出る。 ③ヒュームが多量に発生する。 半自動溶接 ①手溶接より効率が高い。 ②溶接材の交換が少ない。 ③溶接スピードが高い。 ④溶接後のフラックスやスパッタ処理を短縮することができる。 ①品質が技術者の技量に依存する。 ②無風な屋内での作業が必要。 溶接ロボット ①ヒュームやスパッタ発生が少ない。 ②風における影響が減少。 ③品質が一定である。 ④別の高付加価値業務へ熟練者を移行可能に。 ①施工面の形状が限定される。 ②制御・設計・管理において異なる技能が必要。 4.1 手溶接 この溶接方法は、溶接法の中で最も一般的であった方法です。 手溶接とは、被覆アーク溶接のことを一般的に指しています。 この溶接方法は手溶接棒にフラックスを塗布し、電流を流すことによりアークを発生させることにより熱を発生させる方法です。 作業者が溶接トーチを持ち、文字通り手の動作に従って溶接を行います。 この手法には下記のようなメリットとデメリットが考えられます。 メリット ① 設備や溶接棒が小型かつ安価であるため、導入が比較的しやすい。 ② 手による作業のため、素材であったり、構造によることなく溶接することが可能である。 ③ フラックスが溶けることによって生じるガス・スラグが母材を覆うことにより、シールド効果を得ることができる。 デメリット ① スラグの除去をしなければならないことや、溶着効率が低いなどの問題がある。 ② 品質が技術者の技量によって左右される。人によって高品質となることがあれば低品質となることもある。 ③ ヒュームが多量に発生することなどである。   4.2 半自動溶接 半自動アーク溶接はガスシールドアーク溶接の一種であり、この溶接手法は溶着効率の低さを解決するために生み出されました。 現在ではこの半自動アーク溶接のことを指すほど一般的な手法となりました。 手溶接のデメリットを改善した半自動溶接には、以下のようなメリットとデメリットがあります。 メリット ① 手溶接と比較した際に効率が高いこと。また、長い時間の作業が溶接材を交換することなく可能である。 ② 溶接のスピードが高く、溶接をした後に生じるフラックスやスパッタの処理などを短縮することが出来る。 デメリット ① 溶接作業者の技量により品質が左右される。 ② シールドガスを用いるため、基本的に風のない屋内で作業する必要がある(ノンガスワイヤーを使用する場合を除く)。   4.3 自動溶接 今までの半自動溶接では、溶接者の技術力によって生じる品質の違いは防ぐことはできませんでした。 本項の最後には、自動溶接により今までの溶接手法からどのような変化が期待できるのか解説します。 自動溶接には自動溶接機によるものと、溶接ロボットによるものの2種類があります。 本稿では、溶接ロボットによる自動溶接に焦点を当てて紹介します。 まず、自動溶接機による自動溶接は工場のラインなどで連続に行う溶接手法です。 この手法を進化させたものが、ロボット溶接となります。 これにより、自動溶接時に発生していた課題である溶接姿勢における問題を解決することができるようになりました。 ロボット溶接・自動溶接と比較した際の変化は下記になります。 メリット ① 人の安全に影響を与えるヒュームやスパッタの発生が少ない。 ② 風により生じる影響が減少する。 ③ 作業者によって品質が左右されない。 デメリット ① 溶接する際、施工面の形状が直線、緩やかなカーブに限られてしまう。 ② シーケンスの制御や、機構の設計、安全管理の面で今までと異なる技能が必要である。   5 まとめ 近年、技術力の進歩に伴い、溶接の在り方、より大きな視点で見れば製造業の在り方自体大きく変わってきました。 今まで主流となっていた方法では、作業者の作業環境や、製品の品質にバラツキが生じるなどの様々な問題が生じておりました。 このような悩みは溶接だけでなく、加工や検査、組立など多方面からも聞こえます。 しかし、昨今の製造業分野においては、溶接工程の自動化・ロボット化が急速に進んできております。 このようなロボット化は大量生産に向いているものであると思われがちでありましたが、ティーチング作業を行うことにより、多品種少量生産である、中小企業においても工場の自動化を果たし生産性を高めることが期待できます。 これらの自動化・ロボット化を実現することは、上記のような機能的なメリットだけでなく、中小企業においては採用面などにもメリットを享受することが期待できます。 文部科学省も学校教育においてプログラミングの必修化の準備を着実に進めています。 このような流れが意味することとしては、プログラミング環境がない企業には人が集まらない、採用ができないということになりそうです。 「自社では生産面でロボットを導入しなくても問題ない。」という近視眼的な考え方では、ロボットを先に導入した中小企業と比較すると、生産面だけでなく採用面でも後塵を拝する結果となりかねません。 いつか導入しなければならないものですし、製造業においては人手不足が大きな課題となっているのが現状です。 早めに行動しなければ徐々にその差は開いていく一方のようです。 また、本稿では溶接作業の自動化・ロボット化に焦点を置いてご紹介してまいりました。 しかし、近年では、溶接工程という部分的な括りだけではなく、様々な工程においてこれらのロボット化は裾野を広げてきております。 当サイトでは溶接だけでなく加工や検査、組立の工程など、多種多様な自動化・ロボット化の事例を掲載しておりますので是非そちらもご覧くださいませ。 ▼無料ダウンロードはこちらをクリック   [sc name="welding-robot"][/sc] [sc name="robot"][/sc] ▼無料ダウンロードはこちらをクリック 1 はじめに 溶接工程の自動化、工場内物流における搬送工程の自動化、加工機へのワーク投入・取り出 しの自動化… 近年の技術革新により、これらが実現可能な時代になりました。 それも、資金が潤沢にある大企業のみならず、規模がそこまで大きくない工場も当てはまります。 しかし、これまで「自動化」や用途の広い「ロボット」に触れてこなかったが故に、 「どのようにしたらいいかわからない」 「誰に相談すればいいのかわからない」 このようなお悩みを抱える方は多いのではないでしょうか。 実は、「自動化」や「溶接ロボット」の導入により、「労働者数は増加し、業績は好調になり、生産性も高くなる」という研究が発表されています。 https://gigazine.net/news/20190711-robots-and-firms/ この研究の結論として、「産業用溶接ロボットを導入した製造業をはじめとする企業はその業績が好調で労働者も増加である一方、導入していない企業はその生産高はマイナスで、ハイテク企業に太刀打ちできずに雇用状況も悪化する」とされています。 つまり、 「どのようにしたらいいかわからない」 「誰に相談すればいいのかわからない」 という状態のまま躊躇していても、事態は好転するどころか、じわじわと悪化していく一方なのです。 ではどうすればいいか。 答えは単純で、「今すぐ自動化、ロボットの導入」を検討すればいいのです。 この記事では、「中小規模の製造業が、溶接の自動化・溶接ロボット導入をするために関わる情報」を掲載していますから、「自動化、溶接ロボットの導入」を検討し始めの役に立つことでしょう。 この記事では、 ・種々の溶接に最適な溶接ロボット装置の種類 ・溶接の自動化、ロボット化によるメリット を知ることができます。 これらを知ることで、 ・「自分たちの工場での自動化・ロボット化はどんな感じになるのか?」 ・「いざ、自動化・溶接ロボットの導入をするときに、溶接ロボットの機種があり過ぎて分からない!」 といったモヤモヤを解消し、工場経営の改善につながることでしょう。 最後の方では、様々な製品を取り扱う工場が自動化・溶接ロボットを導入することで成し遂げた成功事例について紹介しています。 ぜひ最後までお読みいただき、工場経営の改善にお役立てください。 2 溶接の自動化・ロボット化とは? 溶接作業をはじめとする製造業の多くは作業者の勘や技術に頼ることが多く、いわゆる職人的な作業となってしまうため、品質のばらつきが大きくなりがちです。また、溶接作業には強烈な紫外線やヒュームが発生するため、作業者にとって過酷な作業になります。 このように、属人的になりがちで過酷な溶接作業において、溶接ロボットを適用し自動化を図る事で、 品質を一定の基準に保つ 生産管理の効率化 人手不足の解消 作業環境の改善 などを実現することが可能です。 3 溶接によって変わる最適な溶接ロボット 溶接ロボットによる溶接の自動化は、大きく「スポット溶接」と「アーク溶接」の2つに分けられています。 スポット溶接は自動車の車体溶接などで多く使用されており、比較的大型な溶接ロボットが用いられます。 アーク溶接ロボットは鉄骨フレームをはじめ比較的細かい製品の溶接に使用されることも多く、設置される溶接ロボット機器のサイズも小型になります。 このように製造業の溶接ロボットによる自動化は溶接の方法によってどのような種類が最適であり、かつロボット自体がどれくらいの面積を占めるのかということも異なっていきます。 本項では現在ある溶接の作業において、どの溶接ロボットが適するのかという水平的な目線で、それぞれの溶接方法により溶接ロボットの大きさが異なることを解説しました。 次項では、溶接作業が自動化へと進化している背景について、それぞれのメリットとデメリットを基にして解説していきます。   4 溶接作業はどのように進化してきたのか? 近年、製造業における工場のロボット化が著しく進み、生産性が向上しています。 また、その対象は大企業だけでなく、中小企業にも拡がってきています。 溶接の方法は大きく分類すると下記のような進化を遂げてきています。 手溶接(被覆アーク溶接) → 半自動溶接(半自動アーク溶接)→ 自動溶接(ロボット溶接) 自動溶接(ロボット溶接)を理解するには、それ以前の背景を辿ることが必要不可欠です。 本項では、溶接の発展を追うごとに何故進化の必要性があるのかということを、それぞれの方法に対してメリット、デメリットを列挙しながら解説します。 そちらを見ていただくと何故溶接工程がロボット化を遂げたのかがわかるかと思います。 以下の表は、各作業方法のメリット・デメリットを簡潔にまとめたものになります。 ティーチングの種類 メリット デメリット 手溶接 ①設備や溶接棒が小型かつ安価である。 ②手作業のため、素材・構造に左右されない。 ③シールド効果を得ることができる。 ①スラグ除去や、溶着効率が低い。 ②品質にバラツキが出る。 ③ヒュームが多量に発生する。 半自動溶接 ①手溶接より効率が高い。 ②溶接材の交換が少ない。 ③溶接スピードが高い。 ④溶接後のフラックスやスパッタ処理を短縮することができる。 ①品質が技術者の技量に依存する。 ②無風な屋内での作業が必要。 溶接ロボット ①ヒュームやスパッタ発生が少ない。 ②風における影響が減少。 ③品質が一定である。 ④別の高付加価値業務へ熟練者を移行可能に。 ①施工面の形状が限定される。 ②制御・設計・管理において異なる技能が必要。 4.1 手溶接 この溶接方法は、溶接法の中で最も一般的であった方法です。 手溶接とは、被覆アーク溶接のことを一般的に指しています。 この溶接方法は手溶接棒にフラックスを塗布し、電流を流すことによりアークを発生させることにより熱を発生させる方法です。 作業者が溶接トーチを持ち、文字通り手の動作に従って溶接を行います。 この手法には下記のようなメリットとデメリットが考えられます。 メリット ① 設備や溶接棒が小型かつ安価であるため、導入が比較的しやすい。 ② 手による作業のため、素材であったり、構造によることなく溶接することが可能である。 ③ フラックスが溶けることによって生じるガス・スラグが母材を覆うことにより、シールド効果を得ることができる。 デメリット ① スラグの除去をしなければならないことや、溶着効率が低いなどの問題がある。 ② 品質が技術者の技量によって左右される。人によって高品質となることがあれば低品質となることもある。 ③ ヒュームが多量に発生することなどである。   4.2 半自動溶接 半自動アーク溶接はガスシールドアーク溶接の一種であり、この溶接手法は溶着効率の低さを解決するために生み出されました。 現在ではこの半自動アーク溶接のことを指すほど一般的な手法となりました。 手溶接のデメリットを改善した半自動溶接には、以下のようなメリットとデメリットがあります。 メリット ① 手溶接と比較した際に効率が高いこと。また、長い時間の作業が溶接材を交換することなく可能である。 ② 溶接のスピードが高く、溶接をした後に生じるフラックスやスパッタの処理などを短縮することが出来る。 デメリット ① 溶接作業者の技量により品質が左右される。 ② シールドガスを用いるため、基本的に風のない屋内で作業する必要がある(ノンガスワイヤーを使用する場合を除く)。   4.3 自動溶接 今までの半自動溶接では、溶接者の技術力によって生じる品質の違いは防ぐことはできませんでした。 本項の最後には、自動溶接により今までの溶接手法からどのような変化が期待できるのか解説します。 自動溶接には自動溶接機によるものと、溶接ロボットによるものの2種類があります。 本稿では、溶接ロボットによる自動溶接に焦点を当てて紹介します。 まず、自動溶接機による自動溶接は工場のラインなどで連続に行う溶接手法です。 この手法を進化させたものが、ロボット溶接となります。 これにより、自動溶接時に発生していた課題である溶接姿勢における問題を解決することができるようになりました。 ロボット溶接・自動溶接と比較した際の変化は下記になります。 メリット ① 人の安全に影響を与えるヒュームやスパッタの発生が少ない。 ② 風により生じる影響が減少する。 ③ 作業者によって品質が左右されない。 デメリット ① 溶接する際、施工面の形状が直線、緩やかなカーブに限られてしまう。 ② シーケンスの制御や、機構の設計、安全管理の面で今までと異なる技能が必要である。   5 まとめ 近年、技術力の進歩に伴い、溶接の在り方、より大きな視点で見れば製造業の在り方自体大きく変わってきました。 今まで主流となっていた方法では、作業者の作業環境や、製品の品質にバラツキが生じるなどの様々な問題が生じておりました。 このような悩みは溶接だけでなく、加工や検査、組立など多方面からも聞こえます。 しかし、昨今の製造業分野においては、溶接工程の自動化・ロボット化が急速に進んできております。 このようなロボット化は大量生産に向いているものであると思われがちでありましたが、ティーチング作業を行うことにより、多品種少量生産である、中小企業においても工場の自動化を果たし生産性を高めることが期待できます。 これらの自動化・ロボット化を実現することは、上記のような機能的なメリットだけでなく、中小企業においては採用面などにもメリットを享受することが期待できます。 文部科学省も学校教育においてプログラミングの必修化の準備を着実に進めています。 このような流れが意味することとしては、プログラミング環境がない企業には人が集まらない、採用ができないということになりそうです。 「自社では生産面でロボットを導入しなくても問題ない。」という近視眼的な考え方では、ロボットを先に導入した中小企業と比較すると、生産面だけでなく採用面でも後塵を拝する結果となりかねません。 いつか導入しなければならないものですし、製造業においては人手不足が大きな課題となっているのが現状です。 早めに行動しなければ徐々にその差は開いていく一方のようです。 また、本稿では溶接作業の自動化・ロボット化に焦点を置いてご紹介してまいりました。 しかし、近年では、溶接工程という部分的な括りだけではなく、様々な工程においてこれらのロボット化は裾野を広げてきております。 当サイトでは溶接だけでなく加工や検査、組立の工程など、多種多様な自動化・ロボット化の事例を掲載しておりますので是非そちらもご覧くださいませ。 ▼無料ダウンロードはこちらをクリック   [sc name="welding-robot"][/sc] [sc name="robot"][/sc]