DX CONSULTING COLUMN 工場DXコンサルティングコラム

専門コンサルタントが執筆するAI・ロボットコラム
最新のAI・ロボット技術に精通したコンサルタントによる定期コラム

理論在庫管理の重要性と効果的な方法とは?

2023.09.14

製造業において、在庫管理は重要な課題です。 在庫を正確に管理することは、効率的な生産とスムーズなサプライチェーンを確保するために必要です。 その中でも、理論在庫は在庫管理の重要な概念です。 本記事では、理論在庫を管理する第一歩として、効果的な管理方法について探っていきます。 1.理論在庫管理の必要性 理論在庫管理の必要性は大きく3つございます まず、理論在庫は在庫の見える化を可能にします。 例えば、毎月棚卸を行っている会社様が四半期に1回の棚卸で良い状態になった事例もございます。 その結果元々の棚卸日には、社内での1on1MTGの時間に充てたり、製造の時間にし、生産数を増やすことに成功している会社様もございます。 2つ目に、理論在庫は生産計画の基盤となります。 製造業では、原料や部品の在庫を適切に管理することが重要です。 理論在庫の設定によって、生産タイミングや補充計画を最適化し、生産効率を向上させることができます。 また、生産管理と現場で“明日在庫あるのか確認”の為に所謂追いかけマンがいて、2時間ぐらい仕事をしていることは悲しいことに良くあります。 当人としてもすぐに何とか現状の仕事を打破したいと思っているはずです。 宜しければその追いかけマンを発見してみると良いでしょう。 3つ目に、在庫管理の最適化になります。 何となく在庫が多い・回転率が悪い等の課題に対して効果があります。 在庫管理を数値で行うことで勘と経験による属人化から脱却し、誰でも在庫管理が出来る状態にすることができます。 数値が見えるようになると自然に各々の現場が実績をしっかり計上する(不良も含め)・生産性も上がるようになります。 嘘だと思うなら進めてみてください。 2.理論在庫管理の重要項目 理論在庫管理に向けて重要な項目は2点ございます。 1つ目はマニュアル作成です。 マニュアル作成は、理論在庫の実践と効果的な在庫管理のために欠かせません。 マニュアルは組織内の共通理解を促進します。 在庫管理に関わる各部門や関係者が一貫した理解を持つことは非常に重要です。 マニュアルを作成することにより、在庫管理に関するルールや手順が明確化され、理解が深まります。 棚卸のルールや、実績入力の手順が統一された考え方の元進めなければ、管理の工数が多くなるばかりです。 作成されたマニュアルはトレーニングや教育のツールとして機能します。 新入社員や在庫管理の担当者への指導が容易になります。 マニュアルを参照することで、在庫管理に関する重要なポイントや手法を習得することができます。 生産管理部長の日々の仕事の一部が新卒でも出来るようになれば、会社の賃金効率や、属人化の面からしても良い結果になるでしょう。 さらに、マニュアルは業務の効率化と品質向上をサポートします。 在庫管理における正しい手順やベストプラクティスが明確に示されるため、作業の一貫性や品質の向上に繋がります。 間違った手法や手順によるミスや在庫の誤差を減らすこともできます。 2つ目はBOM管理です。 よくある在庫管理の課題としてBOMが管理しきれていないケースがあります。 新製品の情報が登録されていない・2つの単位管理項目がある等で断念してしまうケースがあるかと存じます。 その場合は強制的にBOMを管理する時間を設けることをオススメします。 システム導入前や、システム導入後もその時間の長さは変化するかとは存じますが、例えばシステム導入後には製販会議等で新製品を作成することを決めた後すぐ等で決めてしまうのが良いのではないでしょうか。 また材料の値上げ等常に変化するものについては、常にアップデートしなければ、古い使えないBOMとなってしまう為、その点についても時間を設ける必要があります。 3.まとめ 理論在庫の概念を理解し、適切なマニュアルを作成すること・BOMを管理することは、組織の効果的な在庫管理を実現するために不可欠です。 理論在庫の設定と効果的な管理によって、在庫の見える化や生産計画の向上、在庫管理の最適化が実現されます。 マニュアルの作成・BOM管理によって、組織内の共通理解を促進し、トレーニングや効率化、品質向上をサポートすることができます。   製造業経営者向け“基幹システム再構築戦略”解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 多くの製造業は、全体としての原価・利益は見えているが、個別の実際原価は、属人化している業務で運用されている事で見えにくくなっています。製品別個別、取引先個別、工程別個別の実際原価を把握することで実際の利益が見えてきます。 見える化、DX化により、適切なアクションを取ることが重要です。 本レポートでは見える化とDX化のポイントを解説します! https://www.funaisoken.co.jp/dl-contents/smart-factory__02003_S045   ■関連するセミナーのご案内 「多品種少量生産板金加工業の為の原価改善!」 社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/104283 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/11/06 (月) 13:00~15:00 2023/11/08 (水) 13:00~15:00 2023/11/16 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/104283 いつも当コラムをご愛読いただきありがとうございます。 製造業において、在庫管理は重要な課題です。 在庫を正確に管理することは、効率的な生産とスムーズなサプライチェーンを確保するために必要です。 その中でも、理論在庫は在庫管理の重要な概念です。 本記事では、理論在庫を管理する第一歩として、効果的な管理方法について探っていきます。 1.理論在庫管理の必要性 理論在庫管理の必要性は大きく3つございます まず、理論在庫は在庫の見える化を可能にします。 例えば、毎月棚卸を行っている会社様が四半期に1回の棚卸で良い状態になった事例もございます。 その結果元々の棚卸日には、社内での1on1MTGの時間に充てたり、製造の時間にし、生産数を増やすことに成功している会社様もございます。 2つ目に、理論在庫は生産計画の基盤となります。 製造業では、原料や部品の在庫を適切に管理することが重要です。 理論在庫の設定によって、生産タイミングや補充計画を最適化し、生産効率を向上させることができます。 また、生産管理と現場で“明日在庫あるのか確認”の為に所謂追いかけマンがいて、2時間ぐらい仕事をしていることは悲しいことに良くあります。 当人としてもすぐに何とか現状の仕事を打破したいと思っているはずです。 宜しければその追いかけマンを発見してみると良いでしょう。 3つ目に、在庫管理の最適化になります。 何となく在庫が多い・回転率が悪い等の課題に対して効果があります。 在庫管理を数値で行うことで勘と経験による属人化から脱却し、誰でも在庫管理が出来る状態にすることができます。 数値が見えるようになると自然に各々の現場が実績をしっかり計上する(不良も含め)・生産性も上がるようになります。 嘘だと思うなら進めてみてください。 2.理論在庫管理の重要項目 理論在庫管理に向けて重要な項目は2点ございます。 1つ目はマニュアル作成です。 マニュアル作成は、理論在庫の実践と効果的な在庫管理のために欠かせません。 マニュアルは組織内の共通理解を促進します。 在庫管理に関わる各部門や関係者が一貫した理解を持つことは非常に重要です。 マニュアルを作成することにより、在庫管理に関するルールや手順が明確化され、理解が深まります。 棚卸のルールや、実績入力の手順が統一された考え方の元進めなければ、管理の工数が多くなるばかりです。 作成されたマニュアルはトレーニングや教育のツールとして機能します。 新入社員や在庫管理の担当者への指導が容易になります。 マニュアルを参照することで、在庫管理に関する重要なポイントや手法を習得することができます。 生産管理部長の日々の仕事の一部が新卒でも出来るようになれば、会社の賃金効率や、属人化の面からしても良い結果になるでしょう。 さらに、マニュアルは業務の効率化と品質向上をサポートします。 在庫管理における正しい手順やベストプラクティスが明確に示されるため、作業の一貫性や品質の向上に繋がります。 間違った手法や手順によるミスや在庫の誤差を減らすこともできます。 2つ目はBOM管理です。 よくある在庫管理の課題としてBOMが管理しきれていないケースがあります。 新製品の情報が登録されていない・2つの単位管理項目がある等で断念してしまうケースがあるかと存じます。 その場合は強制的にBOMを管理する時間を設けることをオススメします。 システム導入前や、システム導入後もその時間の長さは変化するかとは存じますが、例えばシステム導入後には製販会議等で新製品を作成することを決めた後すぐ等で決めてしまうのが良いのではないでしょうか。 また材料の値上げ等常に変化するものについては、常にアップデートしなければ、古い使えないBOMとなってしまう為、その点についても時間を設ける必要があります。 3.まとめ 理論在庫の概念を理解し、適切なマニュアルを作成すること・BOMを管理することは、組織の効果的な在庫管理を実現するために不可欠です。 理論在庫の設定と効果的な管理によって、在庫の見える化や生産計画の向上、在庫管理の最適化が実現されます。 マニュアルの作成・BOM管理によって、組織内の共通理解を促進し、トレーニングや効率化、品質向上をサポートすることができます。   製造業経営者向け“基幹システム再構築戦略”解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 多くの製造業は、全体としての原価・利益は見えているが、個別の実際原価は、属人化している業務で運用されている事で見えにくくなっています。製品別個別、取引先個別、工程別個別の実際原価を把握することで実際の利益が見えてきます。 見える化、DX化により、適切なアクションを取ることが重要です。 本レポートでは見える化とDX化のポイントを解説します! https://www.funaisoken.co.jp/dl-contents/smart-factory__02003_S045   ■関連するセミナーのご案内 「多品種少量生産板金加工業の為の原価改善!」 社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/104283 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/11/06 (月) 13:00~15:00 2023/11/08 (水) 13:00~15:00 2023/11/16 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/104283

工場をペーパーレス化するメリットと導入のポイント

2023.09.14

ペーパーレス化とはあらゆる情報をデータ化して管理することで紙の媒体を無くすということです。 しかし、製造業でもペーパーレス化が叫ばれていますが、「紙文化」が浸透している工場の生産現場では難易度が高く、なかなか導入にこぎつけられないのが現状でしょう。 今回は、工場をペーパーレス化するメリットと導入前の確認ポイント、導入ステップについてお話しします。 1.工場をペーパーレスにすべき理由 ①時間・資源・場所の節約 工場の情報を電子デバイスで管理するようになると、紙に使われる資源と印刷にかかる用紙代・インク代が大きなメリットです。 また、書類を保管していた棚を撤去することで、工場の作業エリアを拡充できます。さらに、データであれば手元の電子デバイスで確認できるため保管場所に行く必要がないので移動や探す時間が省けます。 取引先も同様のシステムを使っていれば、情報の共有ができ輸送コストや送付の手間も省けます。 ②人手不足の解消 今後、モノづくりの世界では日本企業の中で特に技能人材の確保が課題になっていると言われています。属人化した業務をデータ化し自動化することで必要な場所に適切な労働力の差配が可能になるかもしれません。 ③必要な情報がタイムリーに入手できる 情報をデータ化して管理すれば、外出先や取引先との商談中でも欲しいデータをすぐに取り出せるようになります。キーワードでの検索もできるため、どこにあるか分からない書類を探して必要な情報を取り出す必要もありません。 管理職であれば、稟議書や経費申請の承認作業を外出先や在宅勤務でできるのも嬉しいポイントです。申請業務が迅速に行われれば、社内全体の意思決定のスピードも早くなるでしょう。 ④セキュリティが安心 データ化すると情報漏えいの危険性を心配する方がいますが、書類の盗難・紛失リスクを考えるとデータにした方がセキュリティは強固だと言われています。実際、クラウドサービスはセキュリティ対策を強化しており、近年その安全性は向上しています。 2.ペーパーレス化の前に確認しておきたいこと ①導入コストの見積もり 導入には少なからずコストがかかります。パソコンやセキュリティソフトにかかる費用だけでなく、新しく導入するシステムの習熟時間も考えなくてはなりません。 何より今まで紙媒体で蓄積していた情報をデータ化する時間も重要です。その労力と人的コストも踏まえ、データ化により削減できるコストと比較して費用対効果を考える必要があります。 ②スタッフのITリテラシー 実際、作業するのは現場です。ペーパーレス化がむしろ作業効率の低下に繋がらないようペーパーレス化の前に意見交換をし、現場の意見をできるだけ反映させて使いやすいシステムにすることが重要です。導入したのはよいが結局、紙で運用することになったり、情報漏洩が起きてしまわないよう教育も必要です ③システム障害や機器の故障に対応できるか 電子機器の故障や障害はバックアップを常に取っていれば問題ありませんが、ネット環境の動作不良でシステムにアクセスできず作業が止まってしまうケースも考えられます。担当者を置くにしろ外部委託するにしろ予期せぬトラブルにどう対応するかをマニュアル化しておく必要があります。 次に導入までのステップを解説します。 3.工場にペーパーレスを導入するステップ ①業務フローの可視化 まずは、工場での作業工程を書き出し、紙で管理している仕事で電子化できる業務がないかをひとつひとつ洗出します。このように業務の棚卸を行い、ペーパーレスにできる部分がないか確認し、できそうな業務はどう変えていくかを検討していきます。 ②段階的にペーパーレスに移行する 電子化できる業務を見つけたら、一気に電子機器に移行しようとするとハードルが高くなり、操作不良やトラブルも起きやすくなるため段階的にペーパーレスを導入していきます。まずは優先度の高い工程から順番にペーパーレス化を実現していきます。その間にペーパーレス化の必要性を理解してもらうための関係者と協議の場を開くようにしましょう。 ③作業員への操作教育 今まで手書きで対応していた部分を電子化すると、作業者によっては使い方が分からず作業スピードが落ちてしまう可能性があります。 そのため、作業員の勉強会をひらき、全員が使えるように教育を行いましょう。 4.まとめ ペーパーレス化を工場に取り入れるとは、コスト削減や人手不足解消といったさまざまなメリットがあります。 しかし、導入にもコストがかかるため、費用対効果を事前に検証する必要があります。 また、故障した時の対応や、従業員がシステムを使いこなせるのかといった点もしっかりと確認する必要があります。 実際に導入するときには作業工程を可視化し、ペーパーレスにできる業務を段階的に踏んで移行していきましょう。 また、電子化した情報を従業員全員が使えるように研修をひらくこともおすすめします。 いかがでしょう? 生産管理システムは活用できていてもペーパーレスにはなかなか踏み出せないといったお悩みはございませんか? 上記内容について、より具体的に詳細をお知りになりたい場合はお気軽に弊社にご相談ください。 このコラムが皆様の製造現場にお役に立てれば幸いです。 最後までお読みいただきありがとうございました。   製造業経営者向け“基幹システム再構築戦略”解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 多くの製造業は、全体としての原価・利益は見えているが、個別の実際原価は、属人化している業務で運用されている事で見えにくくなっています。製品別個別、取引先個別、工程別個別の実際原価を把握することで実際の利益が見えてきます。 見える化、DX化により、適切なアクションを取ることが重要です。 本レポートでは見える化とDX化のポイントを解説します! https://www.funaisoken.co.jp/dl-contents/smart-factory__02003_S045   ■関連するセミナーのご案内 「多品種少量生産板金加工業の為の原価改善!」 社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/104283 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/11/06 (月) 13:00~15:00 2023/11/08 (水) 13:00~15:00 2023/11/16 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/104283 いつも当コラムをご愛読いただきありがとうございます。 ペーパーレス化とはあらゆる情報をデータ化して管理することで紙の媒体を無くすということです。 しかし、製造業でもペーパーレス化が叫ばれていますが、「紙文化」が浸透している工場の生産現場では難易度が高く、なかなか導入にこぎつけられないのが現状でしょう。 今回は、工場をペーパーレス化するメリットと導入前の確認ポイント、導入ステップについてお話しします。 1.工場をペーパーレスにすべき理由 ①時間・資源・場所の節約 工場の情報を電子デバイスで管理するようになると、紙に使われる資源と印刷にかかる用紙代・インク代が大きなメリットです。 また、書類を保管していた棚を撤去することで、工場の作業エリアを拡充できます。さらに、データであれば手元の電子デバイスで確認できるため保管場所に行く必要がないので移動や探す時間が省けます。 取引先も同様のシステムを使っていれば、情報の共有ができ輸送コストや送付の手間も省けます。 ②人手不足の解消 今後、モノづくりの世界では日本企業の中で特に技能人材の確保が課題になっていると言われています。属人化した業務をデータ化し自動化することで必要な場所に適切な労働力の差配が可能になるかもしれません。 ③必要な情報がタイムリーに入手できる 情報をデータ化して管理すれば、外出先や取引先との商談中でも欲しいデータをすぐに取り出せるようになります。キーワードでの検索もできるため、どこにあるか分からない書類を探して必要な情報を取り出す必要もありません。 管理職であれば、稟議書や経費申請の承認作業を外出先や在宅勤務でできるのも嬉しいポイントです。申請業務が迅速に行われれば、社内全体の意思決定のスピードも早くなるでしょう。 ④セキュリティが安心 データ化すると情報漏えいの危険性を心配する方がいますが、書類の盗難・紛失リスクを考えるとデータにした方がセキュリティは強固だと言われています。実際、クラウドサービスはセキュリティ対策を強化しており、近年その安全性は向上しています。 2.ペーパーレス化の前に確認しておきたいこと ①導入コストの見積もり 導入には少なからずコストがかかります。パソコンやセキュリティソフトにかかる費用だけでなく、新しく導入するシステムの習熟時間も考えなくてはなりません。 何より今まで紙媒体で蓄積していた情報をデータ化する時間も重要です。その労力と人的コストも踏まえ、データ化により削減できるコストと比較して費用対効果を考える必要があります。 ②スタッフのITリテラシー 実際、作業するのは現場です。ペーパーレス化がむしろ作業効率の低下に繋がらないようペーパーレス化の前に意見交換をし、現場の意見をできるだけ反映させて使いやすいシステムにすることが重要です。導入したのはよいが結局、紙で運用することになったり、情報漏洩が起きてしまわないよう教育も必要です ③システム障害や機器の故障に対応できるか 電子機器の故障や障害はバックアップを常に取っていれば問題ありませんが、ネット環境の動作不良でシステムにアクセスできず作業が止まってしまうケースも考えられます。担当者を置くにしろ外部委託するにしろ予期せぬトラブルにどう対応するかをマニュアル化しておく必要があります。 次に導入までのステップを解説します。 3.工場にペーパーレスを導入するステップ ①業務フローの可視化 まずは、工場での作業工程を書き出し、紙で管理している仕事で電子化できる業務がないかをひとつひとつ洗出します。このように業務の棚卸を行い、ペーパーレスにできる部分がないか確認し、できそうな業務はどう変えていくかを検討していきます。 ②段階的にペーパーレスに移行する 電子化できる業務を見つけたら、一気に電子機器に移行しようとするとハードルが高くなり、操作不良やトラブルも起きやすくなるため段階的にペーパーレスを導入していきます。まずは優先度の高い工程から順番にペーパーレス化を実現していきます。その間にペーパーレス化の必要性を理解してもらうための関係者と協議の場を開くようにしましょう。 ③作業員への操作教育 今まで手書きで対応していた部分を電子化すると、作業者によっては使い方が分からず作業スピードが落ちてしまう可能性があります。 そのため、作業員の勉強会をひらき、全員が使えるように教育を行いましょう。 4.まとめ ペーパーレス化を工場に取り入れるとは、コスト削減や人手不足解消といったさまざまなメリットがあります。 しかし、導入にもコストがかかるため、費用対効果を事前に検証する必要があります。 また、故障した時の対応や、従業員がシステムを使いこなせるのかといった点もしっかりと確認する必要があります。 実際に導入するときには作業工程を可視化し、ペーパーレスにできる業務を段階的に踏んで移行していきましょう。 また、電子化した情報を従業員全員が使えるように研修をひらくこともおすすめします。 いかがでしょう? 生産管理システムは活用できていてもペーパーレスにはなかなか踏み出せないといったお悩みはございませんか? 上記内容について、より具体的に詳細をお知りになりたい場合はお気軽に弊社にご相談ください。 このコラムが皆様の製造現場にお役に立てれば幸いです。 最後までお読みいただきありがとうございました。   製造業経営者向け“基幹システム再構築戦略”解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 多くの製造業は、全体としての原価・利益は見えているが、個別の実際原価は、属人化している業務で運用されている事で見えにくくなっています。製品別個別、取引先個別、工程別個別の実際原価を把握することで実際の利益が見えてきます。 見える化、DX化により、適切なアクションを取ることが重要です。 本レポートでは見える化とDX化のポイントを解説します! https://www.funaisoken.co.jp/dl-contents/smart-factory__02003_S045   ■関連するセミナーのご案内 「多品種少量生産板金加工業の為の原価改善!」 社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/104283 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/11/06 (月) 13:00~15:00 2023/11/08 (水) 13:00~15:00 2023/11/16 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/104283

“AIでなんでも検査できる”は間違い! AI外観検査とは?メリットやデメリット、導入事例から導入方法まで一挙ご紹介!

2023.09.07

AI外観検査とは、文字通り外観の不良をAI(人工知能)によって検査する手法です。検査対象製品データを学習させれば、AI自身で画像認識のアルゴリズムを生成することができます。現在は、様々な企業が AI 検査サービスを提供しています。 では、AI外観検査を導入することで何ができるのでしょうか?また、従来の外観検査と比較して、AI外観検査は何がメリット/デメリットなのでしょうか? この記事では、AI外観検査でできることとそのメリット、反対にAI外観検査でできないこととそのデメリット、 中小・中堅企業におけるAI外観検査事例、AI外観検査の導入・運用方法についてご紹介します。 1.AI外観検査でできることとそのメリット AI外観検査を導入するメリットは、主に4つあります。 生産性の向上 検査基準の標準化 人間以上の検査精度の実現 データ学習作業の短縮化 です。一つ一つ解説していきます。 1-1.生産性の向上 1つ目のメリットは生産性の向上です。AI外観検査は、生産性を飛躍的に向上させることができます。AI外観検査を導入すれば、初期学習後に検査を自動で行うことができるため、24時間体制で検査を行う行う環境を実現することが可能になります。終業前に検査してほしい製品をセットしておけば、次の始業日に検査が終わっている状態で仕事を進めることができます。 総じて生産効率が向上するため、生産量の拡大や納期の短縮を実現することができます。 1-2.検査基準の標準化 2つ目のメリットは検査基準の標準化です。従来であれば、品質の標準化は非常に困難でした。 目視で検査を行っている場合、作業者によって検査基準にばらつきが出てしまうためです。 加えて、作業者の疲労度合い等によっても検査基準にばらつきが出てしまいます。 その点、AI外観検査は先述の機械学習アルゴリズムを利用しているため、一度学習したモデルについては一貫して高い精度で検査を行うことができます。 これにより、検査の品質が人の検査員に比べて均一化されます。 特に、時間のかかる検査作業がある場合は、AI外観検査による検査基準標準化の恩恵が大きいと考えられています。 1-3.人間以上の検査精度の実現 3つ目のメリットは人間以上の検査精度の実現です。 先ほどの説明とも被りますが、人間が行う外観検査には、慢性的な疲労や注意力の低下・不足によるヒューマンエラーがつきものです。 また微細なキズや、微妙な色の違い、微妙な形状の違いなどの検査は、肉眼では判定が難しいものがほとんどです。 外観検査AIは機械学習を通じて学習し、一度学習したパターンを確実に認識・分類します。 そのため外観検査AIを導入すれば、検査過程でのヒューマンエラーをなくしたり、肉眼での判断が微妙な不良も精度高く発見することができます。 1-4.設定作業の短縮化 従来は、ルールベース(データを元に、検査基準を人間が設定する手法)による検査でも自動化が可能でしたが、検査項目ごとに人間が検査基準を考える必要がありました。つまり、品種の追加を行う際に、都度検査基準を分析・数値化し、プログラムを組む必要がありました。 AI外観検査は比較的容易な初期設定で、自動的に検査を行うことができます。つまり、検査基準を考える手間と、プログラムを組む手間を失くすことができます。設定の際には、検査対象物のデータを学習用に提供する必要があり、またAIの精度を上げるために、定期的な学習が必要ですが、設定コストが大きく削減されています。 外観検査の自動化成功のポイントを解説! 2.AI外観検査ではできないこととデメリット 万能かと思われるAI外観検査ですが、もちろんできないこともあります。次に、AI外観検査ではできないことと付随するデメリットについて説明します。 2-1.短時間での大量検査 AI外観検査は、短い時間における大量検査を苦手としています。AIを使う際は、同時に大量のデータを処理しているため、一度に処理できる検査の量には限界があります。ケースによっては、従来の画像センサを用いた方が、効果的な場合があります。 2-2.寸法検査 AI外観検査では、寸法検査を行うことができません。AI画像検査で行うことができるのは、過去の画像データと比較して、検査対象が良品なのか?不良品なのか?を判定することのみです。元々の画像データを見て、正確に寸法を計測することは不可能です。その延長で考えれば、AIで寸法検査を行うことは不可能であるとわかるかと思います。 2-3.少量のデータのみを利用したAI外観検査 少量のデータのみでAI外観検査を行おうとすると、検査精度を出すことができず、実用的な自動検査システムにはなり得ません。外観検査においてAIを利用し、且つ高い精度を出したい場合は、100~1000サンプル以上は検査データを集める必要があります。外観検査AIを導入する際のネックは、この適切な画像データを集めることにあると言えます。 3.AI外観検査事例9選:中小・中堅企業編 一口にAI外見検査、と言っても検査方法、検査対象は企業様によって多種多様です。この記事では、品質管理検査、組立時の検査、パッケージング検査、欠陥検出検査の4つの検査における、AI外観検査事例を計9事例紹介します。 3-1.品質管理検査 AI画像処理検査は製品の外観や仕上がりに対して高速かつ正確な検査を行うことができます。例えば、製品の表面の傷や欠陥、色の一貫性などを検出することができます。 AI外観検査事例①:成形品不良品の再検査 従来の検査システムでは、従来の画像検査装置では不良品のOK/NG判定ができないという課題がありました。AI外観検査システムを導入し、画像検査装置で撮影した不良品画像をAI画像処理で再検査することで、不良品と判定された成形品から良品を検出することができます。 AI外観検査事例②:漢方薬の材料不良品検査 漢方薬の材料不良品検査は、今まで目視でのみ検査することが可能でした。漢方薬の材料は様々な乾燥物が使われている事が多く、同じ材料でも形やサイズ、色も若干異なっていたりするためです。AI外観検査を導入し、AIに材料の形やサイズ、色を学習させることで、不良判定が曖昧な不良品や異物を検出することに成功しました。 3-2.組立時の検査 製品の組み立て工程においては、AI画像処理検査を行うことで部品の位置、方向、正確さなどを検査することができます。これにより、組み立ての正確性と一貫性を確保することが可能となります。 AI外観検査事例③:ボルト締結検査 自動車の各部品やボディパネルの組み立てにおいては、AI画像処理検査を用いることで、ボルトの位置、締結の正確さ、欠陥などを検査することができます。 AI外観検査事例④:部品の位置検査 自動車の部品の位置や方向が正しいかどうかを検査するために、AI画像処理検査が使用されます。例えば、ドアやパネルの位置や隙間の一貫性を確認することができます。 AI外観検査事例⑤:ワイヤーハーネス検査 自動車の配線やワイヤーハーネスの組み立てにおいて、AI画像処理検査は配線の接続や絶縁状態を検査します。異常や接触不良を早期に検出し、トラブルや故障を未然に防ぐことができます。 3-3.パッケージング検査 製品の包装やラベルの正確性、完全性、位置などを検査するためにAI画像処理を活用することができます。 AI外観検査事例⑥:ゼリー容器 胴部の製品フィルム検査 製品フィルにあるゼリー内容物の柄などが邪魔になり、フィルムの皺や汚れ、ズレなどが今までの検査装置では困難でした。AIに柄を学習させる事で、柄と皺や傷、汚れなどの区別が出来る様になり、ズレなども今まで以上に精度よく判定する事が出来るようになりました。 AI外観検査事例⑦:お惣菜の具材配置検査 食品工場(お惣菜)において、盛り付けられた具材を今までは目視検査で量や盛り付け位置、盛り付け方、異物などを検査していました。そこでAIに盛り付け方の正解画像を複数パターン覚えさせる事で、今までの検査装置では困難だった目視検査に近い検査が可能となりました。 3-4.欠陥検出検査 製品や部品の表面における欠陥や異常なパターンを検出するために、AI画像処理検査を使用することができます。例えば、溶接部や金型表面のクラック、ひずみ、欠けなどを検出することができます。 AI外観検査事例⑧:溶接不良検査 AIに溶接不良画像と正常な溶接画像を学習させる事により、目視検査でも非常に難しい「スパッタ付着」、「溶接忘れ」、「溶接の長さ不良」、「溶接位置不良」、「焼け跡一部処理忘れ」、「溶接サイズはみ出し」、「溶接かじり」、「溶接穴有」などカメラを使った画像検査で自動検出する事が出来るようになりました。 AI外観検査事例⑨:メッキ不良検査 「メッキ色」、「傷」「打痕」、「異物付着」、「肌荒れ」、「ゆず肌」、「メッキ無し」などの不良画像と良品画像をAIに学習する事で、これらの不良が自動検出する事が可能になりました。 4.AI外観検査の導入方法 外観検査AIを用いた検査の導入方法を大まかに説明致します。 AI外観検査が使われる前のルールベースの画像検査と比較したときの違いは、画像準備、AI学習のフェイズにおいて顕著に出ています。 ルールベースの画像検査では、検査基準を判断するアルゴリズムを担当者が決定する必要があります。撮像した画像に対して、長さや面積、濃淡位置などの特徴を数値的に定義する必要があり、またそれらを考慮し複雑なアルゴリズムを設定する必要があります。 AI外観検査では、検査用の画像を用意し、AIに学習させます。安定した検査精度を出すために、試行錯誤を行っていく必要があります。 5.まとめ AI外観検査は、製造業において新しい品質管理のカタチとして注目されており、今後は、企業がAI外観検査を戦略的かつ有益なツールとして活用することが不可欠です。 この記事を読み、外観検査について、また外観検査AI導入方法についてさらに詳しく知りたい方は、是非下記のレポートをご活用ください。   ■関連するセミナーのご案内 AI外観検査 社長セミナー 外観検査を自動化して工数削減!省人化!標準化!品質向上!不良流出削減! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/109999 本セミナーで学べるポイント 外観検査を自動化してパート従業員や職人に依存している目視検査から脱却する手法を学べる! 外観検査を自動化して属人化している検査工程を標準化するためのポイントを学べる! 外観検査を自動化して不良流出を削減する方法を学べる! 外観検査にAIを活用して検査工程を自動化するための具体的な手法が学べる! 過去に外観検査の自動化に失敗していても成功させるための具体的な手法が学べる! ■開催日程 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 大阪会場 2024/04/09 (火) 10:00~12:30 東京会場 2024/04/16 (火) 10:00~12:30 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/109999 AI外観検査とは、文字通り外観の不良をAI(人工知能)によって検査する手法です。検査対象製品データを学習させれば、AI自身で画像認識のアルゴリズムを生成することができます。現在は、様々な企業が AI 検査サービスを提供しています。 では、AI外観検査を導入することで何ができるのでしょうか?また、従来の外観検査と比較して、AI外観検査は何がメリット/デメリットなのでしょうか? この記事では、AI外観検査でできることとそのメリット、反対にAI外観検査でできないこととそのデメリット、 中小・中堅企業におけるAI外観検査事例、AI外観検査の導入・運用方法についてご紹介します。 1.AI外観検査でできることとそのメリット AI外観検査を導入するメリットは、主に4つあります。 生産性の向上 検査基準の標準化 人間以上の検査精度の実現 データ学習作業の短縮化 です。一つ一つ解説していきます。 1-1.生産性の向上 1つ目のメリットは生産性の向上です。AI外観検査は、生産性を飛躍的に向上させることができます。AI外観検査を導入すれば、初期学習後に検査を自動で行うことができるため、24時間体制で検査を行う行う環境を実現することが可能になります。終業前に検査してほしい製品をセットしておけば、次の始業日に検査が終わっている状態で仕事を進めることができます。 総じて生産効率が向上するため、生産量の拡大や納期の短縮を実現することができます。 1-2.検査基準の標準化 2つ目のメリットは検査基準の標準化です。従来であれば、品質の標準化は非常に困難でした。 目視で検査を行っている場合、作業者によって検査基準にばらつきが出てしまうためです。 加えて、作業者の疲労度合い等によっても検査基準にばらつきが出てしまいます。 その点、AI外観検査は先述の機械学習アルゴリズムを利用しているため、一度学習したモデルについては一貫して高い精度で検査を行うことができます。 これにより、検査の品質が人の検査員に比べて均一化されます。 特に、時間のかかる検査作業がある場合は、AI外観検査による検査基準標準化の恩恵が大きいと考えられています。 1-3.人間以上の検査精度の実現 3つ目のメリットは人間以上の検査精度の実現です。 先ほどの説明とも被りますが、人間が行う外観検査には、慢性的な疲労や注意力の低下・不足によるヒューマンエラーがつきものです。 また微細なキズや、微妙な色の違い、微妙な形状の違いなどの検査は、肉眼では判定が難しいものがほとんどです。 外観検査AIは機械学習を通じて学習し、一度学習したパターンを確実に認識・分類します。 そのため外観検査AIを導入すれば、検査過程でのヒューマンエラーをなくしたり、肉眼での判断が微妙な不良も精度高く発見することができます。 1-4.設定作業の短縮化 従来は、ルールベース(データを元に、検査基準を人間が設定する手法)による検査でも自動化が可能でしたが、検査項目ごとに人間が検査基準を考える必要がありました。つまり、品種の追加を行う際に、都度検査基準を分析・数値化し、プログラムを組む必要がありました。 AI外観検査は比較的容易な初期設定で、自動的に検査を行うことができます。つまり、検査基準を考える手間と、プログラムを組む手間を失くすことができます。設定の際には、検査対象物のデータを学習用に提供する必要があり、またAIの精度を上げるために、定期的な学習が必要ですが、設定コストが大きく削減されています。 外観検査の自動化成功のポイントを解説! 2.AI外観検査ではできないこととデメリット 万能かと思われるAI外観検査ですが、もちろんできないこともあります。次に、AI外観検査ではできないことと付随するデメリットについて説明します。 2-1.短時間での大量検査 AI外観検査は、短い時間における大量検査を苦手としています。AIを使う際は、同時に大量のデータを処理しているため、一度に処理できる検査の量には限界があります。ケースによっては、従来の画像センサを用いた方が、効果的な場合があります。 2-2.寸法検査 AI外観検査では、寸法検査を行うことができません。AI画像検査で行うことができるのは、過去の画像データと比較して、検査対象が良品なのか?不良品なのか?を判定することのみです。元々の画像データを見て、正確に寸法を計測することは不可能です。その延長で考えれば、AIで寸法検査を行うことは不可能であるとわかるかと思います。 2-3.少量のデータのみを利用したAI外観検査 少量のデータのみでAI外観検査を行おうとすると、検査精度を出すことができず、実用的な自動検査システムにはなり得ません。外観検査においてAIを利用し、且つ高い精度を出したい場合は、100~1000サンプル以上は検査データを集める必要があります。外観検査AIを導入する際のネックは、この適切な画像データを集めることにあると言えます。 3.AI外観検査事例9選:中小・中堅企業編 一口にAI外見検査、と言っても検査方法、検査対象は企業様によって多種多様です。この記事では、品質管理検査、組立時の検査、パッケージング検査、欠陥検出検査の4つの検査における、AI外観検査事例を計9事例紹介します。 3-1.品質管理検査 AI画像処理検査は製品の外観や仕上がりに対して高速かつ正確な検査を行うことができます。例えば、製品の表面の傷や欠陥、色の一貫性などを検出することができます。 AI外観検査事例①:成形品不良品の再検査 従来の検査システムでは、従来の画像検査装置では不良品のOK/NG判定ができないという課題がありました。AI外観検査システムを導入し、画像検査装置で撮影した不良品画像をAI画像処理で再検査することで、不良品と判定された成形品から良品を検出することができます。 AI外観検査事例②:漢方薬の材料不良品検査 漢方薬の材料不良品検査は、今まで目視でのみ検査することが可能でした。漢方薬の材料は様々な乾燥物が使われている事が多く、同じ材料でも形やサイズ、色も若干異なっていたりするためです。AI外観検査を導入し、AIに材料の形やサイズ、色を学習させることで、不良判定が曖昧な不良品や異物を検出することに成功しました。 3-2.組立時の検査 製品の組み立て工程においては、AI画像処理検査を行うことで部品の位置、方向、正確さなどを検査することができます。これにより、組み立ての正確性と一貫性を確保することが可能となります。 AI外観検査事例③:ボルト締結検査 自動車の各部品やボディパネルの組み立てにおいては、AI画像処理検査を用いることで、ボルトの位置、締結の正確さ、欠陥などを検査することができます。 AI外観検査事例④:部品の位置検査 自動車の部品の位置や方向が正しいかどうかを検査するために、AI画像処理検査が使用されます。例えば、ドアやパネルの位置や隙間の一貫性を確認することができます。 AI外観検査事例⑤:ワイヤーハーネス検査 自動車の配線やワイヤーハーネスの組み立てにおいて、AI画像処理検査は配線の接続や絶縁状態を検査します。異常や接触不良を早期に検出し、トラブルや故障を未然に防ぐことができます。 3-3.パッケージング検査 製品の包装やラベルの正確性、完全性、位置などを検査するためにAI画像処理を活用することができます。 AI外観検査事例⑥:ゼリー容器 胴部の製品フィルム検査 製品フィルにあるゼリー内容物の柄などが邪魔になり、フィルムの皺や汚れ、ズレなどが今までの検査装置では困難でした。AIに柄を学習させる事で、柄と皺や傷、汚れなどの区別が出来る様になり、ズレなども今まで以上に精度よく判定する事が出来るようになりました。 AI外観検査事例⑦:お惣菜の具材配置検査 食品工場(お惣菜)において、盛り付けられた具材を今までは目視検査で量や盛り付け位置、盛り付け方、異物などを検査していました。そこでAIに盛り付け方の正解画像を複数パターン覚えさせる事で、今までの検査装置では困難だった目視検査に近い検査が可能となりました。 3-4.欠陥検出検査 製品や部品の表面における欠陥や異常なパターンを検出するために、AI画像処理検査を使用することができます。例えば、溶接部や金型表面のクラック、ひずみ、欠けなどを検出することができます。 AI外観検査事例⑧:溶接不良検査 AIに溶接不良画像と正常な溶接画像を学習させる事により、目視検査でも非常に難しい「スパッタ付着」、「溶接忘れ」、「溶接の長さ不良」、「溶接位置不良」、「焼け跡一部処理忘れ」、「溶接サイズはみ出し」、「溶接かじり」、「溶接穴有」などカメラを使った画像検査で自動検出する事が出来るようになりました。 AI外観検査事例⑨:メッキ不良検査 「メッキ色」、「傷」「打痕」、「異物付着」、「肌荒れ」、「ゆず肌」、「メッキ無し」などの不良画像と良品画像をAIに学習する事で、これらの不良が自動検出する事が可能になりました。 4.AI外観検査の導入方法 外観検査AIを用いた検査の導入方法を大まかに説明致します。 AI外観検査が使われる前のルールベースの画像検査と比較したときの違いは、画像準備、AI学習のフェイズにおいて顕著に出ています。 ルールベースの画像検査では、検査基準を判断するアルゴリズムを担当者が決定する必要があります。撮像した画像に対して、長さや面積、濃淡位置などの特徴を数値的に定義する必要があり、またそれらを考慮し複雑なアルゴリズムを設定する必要があります。 AI外観検査では、検査用の画像を用意し、AIに学習させます。安定した検査精度を出すために、試行錯誤を行っていく必要があります。 5.まとめ AI外観検査は、製造業において新しい品質管理のカタチとして注目されており、今後は、企業がAI外観検査を戦略的かつ有益なツールとして活用することが不可欠です。 この記事を読み、外観検査について、また外観検査AI導入方法についてさらに詳しく知りたい方は、是非下記のレポートをご活用ください。   ■関連するセミナーのご案内 AI外観検査 社長セミナー 外観検査を自動化して工数削減!省人化!標準化!品質向上!不良流出削減! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/109999 本セミナーで学べるポイント 外観検査を自動化してパート従業員や職人に依存している目視検査から脱却する手法を学べる! 外観検査を自動化して属人化している検査工程を標準化するためのポイントを学べる! 外観検査を自動化して不良流出を削減する方法を学べる! 外観検査にAIを活用して検査工程を自動化するための具体的な手法が学べる! 過去に外観検査の自動化に失敗していても成功させるための具体的な手法が学べる! ■開催日程 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 大阪会場 2024/04/09 (火) 10:00~12:30 東京会場 2024/04/16 (火) 10:00~12:30 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/109999

DXシステム導入成功のための要素

2023.09.05

デジタル化が叫ばれてから時間が経過し、多くの企業が「システム導入プロジェクト」を経験されたのではないでしょうか? システム導入プロジェクトの多くは試行錯誤しながら少しずつ進めているため、当初の想定していたシステムとは異なるものが出来上がったということもよくあると思います。 中には、実運用まで持っていくことが出来ずに苦戦している。。。という企業もいるのではないでしょうか? 今回は、システム導入を成功するために必要な最も重要な要素を1つご紹介させていただきます。 1.システム導入において直面する壁 本項では、システム導入プロジェクトを発足・推進するにあたって発生し得る状況について説明していきます。 ①目的・効果の適切な明確化 当たり前ですが、プロジェクトを進めていくにあたって、ゴール設定は必要です。 どのような課題があり(As Is)、システム導入によってどのような将来像になるのか(To Be)を明確にしないと、いつまでも終了しないプロジェクトになってしまいます。 しかし、詳細にゴールを設定してしまい、達成できずに難航してしまうのも良くありません。 具体的には、「○○業務を効率化して生産性〇%向上する」を目的とすると、部分最適としてシステム導入してしまうため、会社全体で見た時に他の業務にしわ寄せが来てしまうといった状況も可能性としてはあり得ます。 ある一部分におけるシステム導入であったとしても、「会社全体として」どのような効果を発揮するべきなのか?を明確に文章化することが必要です。 ②業務ヒアリング時の要望の取りまとめ・取捨選択 いざプロジェクトをスタートさせても、次にぶつかる障壁は「要望の取りまとめ・取捨選択」です。 システム導入は膨大な金額がかかるため、数年に1度のプロジェクトとなることが多いと思います。 日頃の業務を実際に行っている現場担当者からすると、今回のプロジェクトで要望を出さないと次改善されるのは数年後となりますので、常日頃考えている要望の他に様々な要望を挙げてきます。中には今回のシステム導入対象範囲を超えて関連業務についても要望を挙げてくることもあります。 「それらをすべて叶えようとすると、とても現在取得している予算内には収まらない、、、、」 「しかし、実際に使う対象である現場担当者の要望を叶えないと使ってもらえないシステムになってしまう、、、、」 そのように悩まれたプロジェクト担当者もいるかと思います。 結果として、折衷案としてどちらも譲歩せざるを得なくなってしまい、何かしこりの残るシステムとなってしまうということがよく見受けられます。 ③外部企業との認識のすり合わせ 要望を取りまとめ、システム会社と要件定義を始めても、次に直面する壁は「認識のすり合わせ」です。 当たり前ですが、システム会社は自社のことは分かりません。自社の業界すら知らない場合もあります。 システム会社はシステムのプロであるため、要求に対しての成果物はピカイチですが、その成果物がどのように業務で活用されるのかは範囲外となります。 そのため、自社としての課題・状況を初めて資料を見る方にも分かるように文書化し、どのような効果を得ていきたいのかを共通認識で進めていけるようにする必要があります。 ④(全て社内で完結させる場合)技術力の壁、永久的な問い合わせ対応の壁 外部ではなくすべて社内で完結させる場合、もちろんシステム開発者は社内の人間であるため、認識のすり合わせは必要なくなります。 ただ、やはりシステム開発技術力を売りとしてビジネスをしているシステム会社と比較すると、どうしても劣る部分はあるのではないでしょうか? そうなると、機能を実装するのに必要以上に時間がかかってしまったり、不具合が多発してしまうなどリスクが発生してしまいます。 また、仮にすべて実装が完了したとしても、②で示した通り要望は常に発生しているため、終わらない改修が始まります。 終いには当初求められていたシステムとは全く異なるシステムが完成し、「会社全体として」業務が無意味に属人化してしまうといった可能性があります。 2.導入を成功させるための最も重要な要素とは では、1項の課題はどのようにして未然に防ぐことが出来るのか? システム導入を成功させるうえで最も重要な要素とは、 それは、「プロジェクト発足時に全体コンセプトを策定する」ことです。 例えば、 「全社のシステムの機能を洗い出し、取捨選択、すべてのデータベースがシームレスに連携するようにする」 「紙業務を廃止し、タブレットを導入することで情報連携をスムーズに行う。」 「現場の製造進捗を見える化し、顧客への納期回答スピードを向上させる。」 等となります。 ポイントとしては、 ・どのような結果を得られるようにするのか?を明確にすること ・このコンセプトの認識をプロジェクトに関わるメンバー全員がズレなく理解していること となります。 一番初めにコンセプトを策定することで、1項のそれぞれの課題に対しては下記のような効果が得られます。 ①目的・効果の適切な明確化 コンセプトが策定されることで、目的が明確になります。 さらに将来像が明確になるため、プロジェクトとしてのゴールが明確になります。 ②業務ヒアリング時の要望の取りまとめ・取捨選択 様々な要望を取捨選択する際、コンセプトが明確に定まっていることにより、 「今回のコンセプトとは外れている」という明確な理由をもとに断ることができます。 断られた側も、理由なしに断られたわけではないため、ある程度の理解をしていただけるようになります。 ③外部企業との認識のすり合わせ コンセプトが明確になることにより、システム会社もそのコンセプトを達成するための要求仕様であることを理解することができます。 また、コンセプトがあることにより、システム会社からもそのコンセプトを軸とした質問が出てくるようになるため、会議の効率性も向上します。 ③と同様に、提案された機能に対しての社内議論も軸がブレることなく行うことができます。 ④(全て社内で完結させる場合)技術力の壁、永久的な問い合わせ対応の壁 コンセプトが明確になることにより、社内開発者が持っている技術の中で実現できる代替案を提案することが出来るようになります。 また、コンセプト明確化により技術力の壁も明確になるため、プロジェクト断念の前に外部へ開発を委託するという判断も適切に行うことが出来るようになります。 永久的な問い合わせもコンセプトとの照らし合わせにより断る、または別プロジェクト発足による対応を行うことができます。 3.まとめ いかがでしょうか?今回は「全体コンセプト策定」の重要性を記載させていただきました。 システム導入プロジェクトを成功へ導くためにも、是非実践していただければと思います。 また、工場DX.comではプロジェクト策定から要求取りまとめ・取捨選択、システム導入後の実運用まで網羅的にサポートしております。 どのようなプロジェクト推進が良いのか、等お気軽にお問合せいただけますと幸いです。   製造業経営者向け“基幹システム再構築戦略”解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 多くの製造業は、全体としての原価・利益は見えているが、個別の実際原価は、属人化している業務で運用されている事で見えにくくなっています。製品別個別、取引先個別、工程別個別の実際原価を把握することで実際の利益が見えてきます。 見える化、DX化により、適切なアクションを取ることが重要です。 本レポートでは見える化とDX化のポイントを解説します! https://www.funaisoken.co.jp/dl-contents/smart-factory__02003_S045   ■関連するセミナーのご案内 「多品種少量生産機械加工業の為の原価改善!」 社長セミナー 生産管理&原価管理を徹底見直し!原価率削減!粗利改善!儲け改善! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/103833 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/10/04 (水) 13:00~15:00 2023/10/06 (金) 13:00~15:00 2023/10/11 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/103833 いつも当コラムをご愛読いただきありがとうございます。 デジタル化が叫ばれてから時間が経過し、多くの企業が「システム導入プロジェクト」を経験されたのではないでしょうか? システム導入プロジェクトの多くは試行錯誤しながら少しずつ進めているため、当初の想定していたシステムとは異なるものが出来上がったということもよくあると思います。 中には、実運用まで持っていくことが出来ずに苦戦している。。。という企業もいるのではないでしょうか? 今回は、システム導入を成功するために必要な最も重要な要素を1つご紹介させていただきます。 1.システム導入において直面する壁 本項では、システム導入プロジェクトを発足・推進するにあたって発生し得る状況について説明していきます。 ①目的・効果の適切な明確化 当たり前ですが、プロジェクトを進めていくにあたって、ゴール設定は必要です。 どのような課題があり(As Is)、システム導入によってどのような将来像になるのか(To Be)を明確にしないと、いつまでも終了しないプロジェクトになってしまいます。 しかし、詳細にゴールを設定してしまい、達成できずに難航してしまうのも良くありません。 具体的には、「○○業務を効率化して生産性〇%向上する」を目的とすると、部分最適としてシステム導入してしまうため、会社全体で見た時に他の業務にしわ寄せが来てしまうといった状況も可能性としてはあり得ます。 ある一部分におけるシステム導入であったとしても、「会社全体として」どのような効果を発揮するべきなのか?を明確に文章化することが必要です。 ②業務ヒアリング時の要望の取りまとめ・取捨選択 いざプロジェクトをスタートさせても、次にぶつかる障壁は「要望の取りまとめ・取捨選択」です。 システム導入は膨大な金額がかかるため、数年に1度のプロジェクトとなることが多いと思います。 日頃の業務を実際に行っている現場担当者からすると、今回のプロジェクトで要望を出さないと次改善されるのは数年後となりますので、常日頃考えている要望の他に様々な要望を挙げてきます。中には今回のシステム導入対象範囲を超えて関連業務についても要望を挙げてくることもあります。 「それらをすべて叶えようとすると、とても現在取得している予算内には収まらない、、、、」 「しかし、実際に使う対象である現場担当者の要望を叶えないと使ってもらえないシステムになってしまう、、、、」 そのように悩まれたプロジェクト担当者もいるかと思います。 結果として、折衷案としてどちらも譲歩せざるを得なくなってしまい、何かしこりの残るシステムとなってしまうということがよく見受けられます。 ③外部企業との認識のすり合わせ 要望を取りまとめ、システム会社と要件定義を始めても、次に直面する壁は「認識のすり合わせ」です。 当たり前ですが、システム会社は自社のことは分かりません。自社の業界すら知らない場合もあります。 システム会社はシステムのプロであるため、要求に対しての成果物はピカイチですが、その成果物がどのように業務で活用されるのかは範囲外となります。 そのため、自社としての課題・状況を初めて資料を見る方にも分かるように文書化し、どのような効果を得ていきたいのかを共通認識で進めていけるようにする必要があります。 ④(全て社内で完結させる場合)技術力の壁、永久的な問い合わせ対応の壁 外部ではなくすべて社内で完結させる場合、もちろんシステム開発者は社内の人間であるため、認識のすり合わせは必要なくなります。 ただ、やはりシステム開発技術力を売りとしてビジネスをしているシステム会社と比較すると、どうしても劣る部分はあるのではないでしょうか? そうなると、機能を実装するのに必要以上に時間がかかってしまったり、不具合が多発してしまうなどリスクが発生してしまいます。 また、仮にすべて実装が完了したとしても、②で示した通り要望は常に発生しているため、終わらない改修が始まります。 終いには当初求められていたシステムとは全く異なるシステムが完成し、「会社全体として」業務が無意味に属人化してしまうといった可能性があります。 2.導入を成功させるための最も重要な要素とは では、1項の課題はどのようにして未然に防ぐことが出来るのか? システム導入を成功させるうえで最も重要な要素とは、 それは、「プロジェクト発足時に全体コンセプトを策定する」ことです。 例えば、 「全社のシステムの機能を洗い出し、取捨選択、すべてのデータベースがシームレスに連携するようにする」 「紙業務を廃止し、タブレットを導入することで情報連携をスムーズに行う。」 「現場の製造進捗を見える化し、顧客への納期回答スピードを向上させる。」 等となります。 ポイントとしては、 ・どのような結果を得られるようにするのか?を明確にすること ・このコンセプトの認識をプロジェクトに関わるメンバー全員がズレなく理解していること となります。 一番初めにコンセプトを策定することで、1項のそれぞれの課題に対しては下記のような効果が得られます。 ①目的・効果の適切な明確化 コンセプトが策定されることで、目的が明確になります。 さらに将来像が明確になるため、プロジェクトとしてのゴールが明確になります。 ②業務ヒアリング時の要望の取りまとめ・取捨選択 様々な要望を取捨選択する際、コンセプトが明確に定まっていることにより、 「今回のコンセプトとは外れている」という明確な理由をもとに断ることができます。 断られた側も、理由なしに断られたわけではないため、ある程度の理解をしていただけるようになります。 ③外部企業との認識のすり合わせ コンセプトが明確になることにより、システム会社もそのコンセプトを達成するための要求仕様であることを理解することができます。 また、コンセプトがあることにより、システム会社からもそのコンセプトを軸とした質問が出てくるようになるため、会議の効率性も向上します。 ③と同様に、提案された機能に対しての社内議論も軸がブレることなく行うことができます。 ④(全て社内で完結させる場合)技術力の壁、永久的な問い合わせ対応の壁 コンセプトが明確になることにより、社内開発者が持っている技術の中で実現できる代替案を提案することが出来るようになります。 また、コンセプト明確化により技術力の壁も明確になるため、プロジェクト断念の前に外部へ開発を委託するという判断も適切に行うことが出来るようになります。 永久的な問い合わせもコンセプトとの照らし合わせにより断る、または別プロジェクト発足による対応を行うことができます。 3.まとめ いかがでしょうか?今回は「全体コンセプト策定」の重要性を記載させていただきました。 システム導入プロジェクトを成功へ導くためにも、是非実践していただければと思います。 また、工場DX.comではプロジェクト策定から要求取りまとめ・取捨選択、システム導入後の実運用まで網羅的にサポートしております。 どのようなプロジェクト推進が良いのか、等お気軽にお問合せいただけますと幸いです。   製造業経営者向け“基幹システム再構築戦略”解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 多くの製造業は、全体としての原価・利益は見えているが、個別の実際原価は、属人化している業務で運用されている事で見えにくくなっています。製品別個別、取引先個別、工程別個別の実際原価を把握することで実際の利益が見えてきます。 見える化、DX化により、適切なアクションを取ることが重要です。 本レポートでは見える化とDX化のポイントを解説します! https://www.funaisoken.co.jp/dl-contents/smart-factory__02003_S045   ■関連するセミナーのご案内 「多品種少量生産機械加工業の為の原価改善!」 社長セミナー 生産管理&原価管理を徹底見直し!原価率削減!粗利改善!儲け改善! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/103833 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/10/04 (水) 13:00~15:00 2023/10/06 (金) 13:00~15:00 2023/10/11 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/103833

製造業の営業部門・設計部門のDX事例

2023.09.05

今回ご紹介するのは、メーカーにおけるデジタル技術を活用した“営業&設計部門の生産性向上” に関する事例です。 【事例サマリー】 ・「営業担当者の提案業務」と「設計担当者の設計業務」の両方の工数削減を実現! ・たった1種類のシステムが、営業&設計部門の生産性向上に貢献! 【Before(システム導入前の状態と主な課題)】 顧客との商談を経て、営業担当者から設計部へ「顧客提案用のCAD図面を作ってほしい」という要望が頻発。 設計部は本業である「受注後」の詳細設計業務へ注力できないという状況に。 全体として受注に繋がらない案件も多く、失注したら設計担当者の工数がそのままマイナス(赤字)となっていた。 【After(システム導入後の主な課題解決効果)】 CADを使えない営業担当者でも顧客との商談中に必要情報を入力することで、その場で顧客提案用のCAD図面を自動作成できるシステムを導入。 結果として、設計部の業務負担が激減。 設計担当者は空いた時間で「より付加価値の高い詳細設計業務」に集中できるようになった。 【取り組みのポイント】 ▼営業担当者 「CAD図面の作成依頼⇒顧客へCAD図面を提示する」までの時間を  「1週間以上⇒数分間」へ大幅に短縮! ▼設計担当者 失注リスクのある「受注前」の設計業務の工数を大幅カット &「受注後」の詳細設計業務へリソースを集中 ⇒設計担当者の付加価値アップを実現!   ⇒たった1種類のシステムが、営業&設計部門の生産性向上に貢献! 以下の無料ダウンロードレポートでは、 本コラムの内容をより詳しく解説しています。 是非、ダウンロードしていただき、貴社の経営にお役立てください。   ▼レポート無料ダウンロード お申し込みはこちら▼ 船井流 DX事例レポート “営業&設計部門の生産性向上” 最新事例解説レポート https://www.funaisoken.co.jp/dl-contents/smart-factory__00262 営業担当者の提案と設計担当者の工数削減をデジタルがサポート デジタル技術を活用し“付加価値アップ”を加速させる! “ヒトを活かすDX”の実践事例とは? 具体的事例 【従業員数】 約70名 【業種】 コンテナ製造メーカー 【営業担当者】 「CAD図面の作成依頼⇒顧客へCAD図面を提示する」までの時間を 「1週間以上⇒数分間」へ大幅に短縮! 【設計担当者】 「受注前」の設計業務の工数を大幅カット& 「受注後」の詳細設計業務へリソースを集中 ⇒設計担当者の付加価値アップを実現!  たった1種類のシステムが、営業&設計部門の生産性向上に貢献   ■関連するセミナーのご案内 見積AI 社長セミナー 特注生産・一品一様生産における属人的な見積業務にAI導入して受注率UP&利益率UP! https://www.funaisoken.co.jp/seminar/103986 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/10/12 (木) 13:00~15:00 2023/10/17 (火) 13:00~15:00 2023/10/19 (木) 13:00~15:00 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/103986 今回ご紹介するのは、メーカーにおけるデジタル技術を活用した“営業&設計部門の生産性向上” に関する事例です。 【事例サマリー】 ・「営業担当者の提案業務」と「設計担当者の設計業務」の両方の工数削減を実現! ・たった1種類のシステムが、営業&設計部門の生産性向上に貢献! 【Before(システム導入前の状態と主な課題)】 顧客との商談を経て、営業担当者から設計部へ「顧客提案用のCAD図面を作ってほしい」という要望が頻発。 設計部は本業である「受注後」の詳細設計業務へ注力できないという状況に。 全体として受注に繋がらない案件も多く、失注したら設計担当者の工数がそのままマイナス(赤字)となっていた。 【After(システム導入後の主な課題解決効果)】 CADを使えない営業担当者でも顧客との商談中に必要情報を入力することで、その場で顧客提案用のCAD図面を自動作成できるシステムを導入。 結果として、設計部の業務負担が激減。 設計担当者は空いた時間で「より付加価値の高い詳細設計業務」に集中できるようになった。 【取り組みのポイント】 ▼営業担当者 「CAD図面の作成依頼⇒顧客へCAD図面を提示する」までの時間を  「1週間以上⇒数分間」へ大幅に短縮! ▼設計担当者 失注リスクのある「受注前」の設計業務の工数を大幅カット &「受注後」の詳細設計業務へリソースを集中 ⇒設計担当者の付加価値アップを実現!   ⇒たった1種類のシステムが、営業&設計部門の生産性向上に貢献! 以下の無料ダウンロードレポートでは、 本コラムの内容をより詳しく解説しています。 是非、ダウンロードしていただき、貴社の経営にお役立てください。   ▼レポート無料ダウンロード お申し込みはこちら▼ 船井流 DX事例レポート “営業&設計部門の生産性向上” 最新事例解説レポート https://www.funaisoken.co.jp/dl-contents/smart-factory__00262 営業担当者の提案と設計担当者の工数削減をデジタルがサポート デジタル技術を活用し“付加価値アップ”を加速させる! “ヒトを活かすDX”の実践事例とは? 具体的事例 【従業員数】 約70名 【業種】 コンテナ製造メーカー 【営業担当者】 「CAD図面の作成依頼⇒顧客へCAD図面を提示する」までの時間を 「1週間以上⇒数分間」へ大幅に短縮! 【設計担当者】 「受注前」の設計業務の工数を大幅カット& 「受注後」の詳細設計業務へリソースを集中 ⇒設計担当者の付加価値アップを実現!  たった1種類のシステムが、営業&設計部門の生産性向上に貢献   ■関連するセミナーのご案内 見積AI 社長セミナー 特注生産・一品一様生産における属人的な見積業務にAI導入して受注率UP&利益率UP! https://www.funaisoken.co.jp/seminar/103986 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/10/12 (木) 13:00~15:00 2023/10/17 (火) 13:00~15:00 2023/10/19 (木) 13:00~15:00 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/103986

補助金を活用した塗装ロボット活用事例

2023.08.30

今回は、塗装ロボットの補助金活用事例というテーマで、補助金活用の一般的な流れと、補助金を活用した塗装ロボットの活用成功事例をお伝えします。 1.補助金活用の一般的な流れ 一般的な補助金活用の進め方は以下の通りです。 1.必要書類の用意 申請に必要な書類を用意する 2.事業計画書案を作成 補助金申請に必要な計画をまとめ、書類を作成する 3.認定確認書の入手 金融機関等から認定支援機関確認書を入手する 4.提出用書類の準備 上記2,3を含めた提出必須書類および加点用書類等の添付ファイルを準備する 5.申請する 申請システム上で必要事項を入力、必要書類を添付して申請する 6.正式な見積書を準備 申請から2~3か月後の採択発表後に正式な見積書を作成する 7.交付申請書を作成 交付申請書を作成する 8.交付申請 システム上で交付申請をする 9.申請事務局への対応 交付申請書に対する事務局からの指摘に対応する 10.交付決定・発注 交付決定後に発注可 11.証票整理 設備導入、支払いなどを実施し、証票を整理する 12.実績報告書を作成 13.実績報告書を提出 システム上にて実績報告書を提出 14.事務局への対応 実績報告書に対する事務局からの指摘に対応する 15.確定通知入手 上記のように補助金の申請には多くの手間がかかります。 ですが以前のコラムでもお伝えしている通り補助金の活用は場合によっては何千万円もの補助を獲得することができるため、中小製造業にとって大きな投資となるロボット活用を検討する際には無くてなならない存在です。 普段、忙しくしている経営者が上記のような書類を全て準備するのは困難ですので、適切な外部リソース(補助金コンサルタント)を利用して、補助金の採択率を高めるような進め方が良いでしょう。 では次に、実際の補助金を活用した塗装ロボットの事例を見ていきます。 2.AIはやる/やらないではなく、来るもの ①塗装熟練者の手吹き塗装技術をロボットで実現! ティーチングが容易なベル塗装ロボットを活用。 熟練工レスでの塗装+自動化を実現。 専任の若手従業員の活躍の場を生み出すことに成功!ティーチングが容易なベル塗装機を導入することで塗装未経験者でもロボット操作が可能に! ②熟練技術者の塗装技術の再現性を高める塗装ロボット導入 高度な塗装技術を要するピアノブラック塗装に対応するロボットを導入し、競争力強化を行う4台のカメラとスプレーガンに取り付けられたセンサーで熟練技術者が実際に塗装を施したスプレーガンの移動情報、噴霧量などの様々な塗装条件を記録し、データ化を行いロボットに反映することができる。 これにより、最も膜厚差が少ない製品を塗装した時の塗装情報をデータ化し、ロボットで再現することができるようになった。 ③塗装ロボット走行装置の導入による大型製品塗装の高品質化 塗装ロボット走行装置の導入により、大型製品塗装の塗装ラインを自動化熟練作業者の塗装プロセスを専用カメラでとらえて作業を再現する新たなロボット制御で塗装作業をロボットで簡易に自動化し、高生産性の実現と作業環境の改善を進めた。 補助金を活用し、熟練作業者の技能(動き)を再現できる「ティーチングアシスト塗装ロボットシステム」を導入。 これは複数の専用カメラでとらえた熟練作業者の塗装動作を自動的にデータ化し、塗装ロボットがまったく同じ塗装作業を自動で行うシステムである。 ※参考:https://portal.monodukuri-hojo.jp/index.html 今回ご紹介した事例はほんの一部です。 さらに詳しい情報は無料のダウンロードレポートにて解説しております。 この機会に是非ダウンロードし、貴社のロボット活用にお役立て下さい。   塗装業経営者向け 塗装ロボット補助金活用解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 「こうなりたい!」と思っている経営者様におすすめ 塗装業界での自動化・DX化について知りたいと思っている経営者様 塗装工程のロボット化について具体的な事例を知りたいと思っている経営者様 補助金を活用したDX化事例について知りたいと思っている経営者様 補助金の採択フローについてご興味のある経営者様 https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_02005_S045   ■関連するセミナーのご案内 【共催】都内補助金最大1億円で工場をDX!製造業社長セミナー https://www.funaisoken.co.jp/seminar/105151 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/10/31 (火) 13:00~15:00 2023/11/08 (水) 13:00~15:00 2023/11/09 (木) 13:00~15:00 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/105151 いつも当コラムをご愛読いただきありがとうございます。 今回は、塗装ロボットの補助金活用事例というテーマで、補助金活用の一般的な流れと、補助金を活用した塗装ロボットの活用成功事例をお伝えします。 1.補助金活用の一般的な流れ 一般的な補助金活用の進め方は以下の通りです。 1.必要書類の用意 申請に必要な書類を用意する 2.事業計画書案を作成 補助金申請に必要な計画をまとめ、書類を作成する 3.認定確認書の入手 金融機関等から認定支援機関確認書を入手する 4.提出用書類の準備 上記2,3を含めた提出必須書類および加点用書類等の添付ファイルを準備する 5.申請する 申請システム上で必要事項を入力、必要書類を添付して申請する 6.正式な見積書を準備 申請から2~3か月後の採択発表後に正式な見積書を作成する 7.交付申請書を作成 交付申請書を作成する 8.交付申請 システム上で交付申請をする 9.申請事務局への対応 交付申請書に対する事務局からの指摘に対応する 10.交付決定・発注 交付決定後に発注可 11.証票整理 設備導入、支払いなどを実施し、証票を整理する 12.実績報告書を作成 13.実績報告書を提出 システム上にて実績報告書を提出 14.事務局への対応 実績報告書に対する事務局からの指摘に対応する 15.確定通知入手 上記のように補助金の申請には多くの手間がかかります。 ですが以前のコラムでもお伝えしている通り補助金の活用は場合によっては何千万円もの補助を獲得することができるため、中小製造業にとって大きな投資となるロボット活用を検討する際には無くてなならない存在です。 普段、忙しくしている経営者が上記のような書類を全て準備するのは困難ですので、適切な外部リソース(補助金コンサルタント)を利用して、補助金の採択率を高めるような進め方が良いでしょう。 では次に、実際の補助金を活用した塗装ロボットの事例を見ていきます。 2.AIはやる/やらないではなく、来るもの ①塗装熟練者の手吹き塗装技術をロボットで実現! ティーチングが容易なベル塗装ロボットを活用。 熟練工レスでの塗装+自動化を実現。 専任の若手従業員の活躍の場を生み出すことに成功!ティーチングが容易なベル塗装機を導入することで塗装未経験者でもロボット操作が可能に! ②熟練技術者の塗装技術の再現性を高める塗装ロボット導入 高度な塗装技術を要するピアノブラック塗装に対応するロボットを導入し、競争力強化を行う4台のカメラとスプレーガンに取り付けられたセンサーで熟練技術者が実際に塗装を施したスプレーガンの移動情報、噴霧量などの様々な塗装条件を記録し、データ化を行いロボットに反映することができる。 これにより、最も膜厚差が少ない製品を塗装した時の塗装情報をデータ化し、ロボットで再現することができるようになった。 ③塗装ロボット走行装置の導入による大型製品塗装の高品質化 塗装ロボット走行装置の導入により、大型製品塗装の塗装ラインを自動化熟練作業者の塗装プロセスを専用カメラでとらえて作業を再現する新たなロボット制御で塗装作業をロボットで簡易に自動化し、高生産性の実現と作業環境の改善を進めた。 補助金を活用し、熟練作業者の技能(動き)を再現できる「ティーチングアシスト塗装ロボットシステム」を導入。 これは複数の専用カメラでとらえた熟練作業者の塗装動作を自動的にデータ化し、塗装ロボットがまったく同じ塗装作業を自動で行うシステムである。 ※参考:https://portal.monodukuri-hojo.jp/index.html 今回ご紹介した事例はほんの一部です。 さらに詳しい情報は無料のダウンロードレポートにて解説しております。 この機会に是非ダウンロードし、貴社のロボット活用にお役立て下さい。   塗装業経営者向け 塗装ロボット補助金活用解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 「こうなりたい!」と思っている経営者様におすすめ 塗装業界での自動化・DX化について知りたいと思っている経営者様 塗装工程のロボット化について具体的な事例を知りたいと思っている経営者様 補助金を活用したDX化事例について知りたいと思っている経営者様 補助金の採択フローについてご興味のある経営者様 https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_02005_S045   ■関連するセミナーのご案内 【共催】都内補助金最大1億円で工場をDX!製造業社長セミナー https://www.funaisoken.co.jp/seminar/105151 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/10/31 (火) 13:00~15:00 2023/11/08 (水) 13:00~15:00 2023/11/09 (木) 13:00~15:00 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/105151

生成AIの上手な使い方

2023.08.24

1.生成AIとは何か?生成AIのインパクト 今、話題の生成AIですが、我々の身の回りはすでに生成AIで作られたものでとり囲まれているかもしれません。 インターネットで目にする文章、画像、音声などは実は今、私たちが知らないうちに大量にAIで作られています。 生成AIとは、簡単にいうと、「様々なコンテンツを自動で大量に生成できるAI」のことを指します。 従来の「AI」と「生成AI」の違いについては、「オリジナルコンテンツ創造の可否」にあります。 従来AIは「学習済みのデータの中から適切な回答を探して提示する性質」を持っていましたが、生成AIは「0から1を生み出す性質(オリジナルコンテンツを創出)」が特徴です。 AIが、作家が作ったような文章を書き、芸術家が描くような画像を生成してくれます。 生成AIは人間の仕事や作業をサポートしてくれる(短時間で生成する)ツールとして急速に注目を集め、利用されています。 2.AIはやる/やらないではなく、来るもの よく社内で「AIを活用するか、しないか」を議論されているという話聞きます。 これは、インターネット到来時代に「インターネットを使うか、使わないか」を議論していることと同じです。 人間は便利なものは必ず使うようになります。 「スマホよりガラケーの方がいい」と言っていた方々も、今は全員スマホを使っています。 人間は利便性がよい方に確実に転がります。 「AIは使えない!」という方々も良くいますが、それはAI自体をよく知らないか、使い方を間違えている方々です。 <ハサミで金棒は切れません> AIが使えないという方々は「ハサミで金棒を切って、使えない」と言っているに過ぎません。 AIは万能ではありません。 使い方があり、使えないというのは、そもそも使い方を理解していないのです。 AIを正しく理解して、正しく使えば、便利なものには間違いありません。 ただ、業務利用するにはきちんとした知識が必要です。 知識もないまま、AIを扱うと間違いなく痛い目に遭うでしょう。 3.AIと仲良く暮らすには? 私たちは誰もかれも「現状が好きな生き物」です。 携帯電話が到来した時、「家に電話すれば済む。用事があれば公衆電話があるし、出掛けているときに捕まりたくない」と私たちは思っていました。 インターネットが到来した時も、「やっぱり紙がいい。パソコンは難しい・わかりづらい」と私たちは思っていました。 スマホが到来した時も、「ガラケーで十分。スマホはわかりづらい」と私たちは思っていました。 新しいものが出てきた時に、私たちは必ず「今のままで良い」と思うのです。 ただ、手のひら返しをするタイミングは思いのほかすぐにやってくるのです。 AIがわからないという方は、とりあえずchat-GPTサービスをまずは試してください。 もしかしたら、「役に立たない。 インターネットで検索すれば十分」と思うかもしれません。 それでもいろいろなことを試して見てください。 いろいろな可能性が見えるかもしれません。 すでに身近にAIサービスは見えるもの・見えないものたくさんリリースされています。 現状のAI技術にたくさん触れて、今のAIのレベルを確認してください。 幸いAIの進化はとても早く、1年も経てば、別の世界を見せてくれます。 頑張って、抗っても、拒絶してもAIの時代はやってきます。 事実、すでに身の回りの文章や画像が、人が作ったのか、AIが作ったのか、誰にもわかりません。 この文章自体、AIが書いているかもしれません。 確実なことは「AIが便利なものであること」「どの会社も人材不足」ということです。 この技術を皆さんのビジネスにどう有意義に生かしてくか、ただそれだけなのだと思います。 最後までお読みいただきありがとうございました。   製造業経営者向け“基幹システム再構築戦略”解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 多くの製造業は、全体としての原価・利益は見えているが、個別の実際原価は、属人化している業務で運用されている事で見えにくくなっています。製品別個別、取引先個別、工程別個別の実際原価を把握することで実際の利益が見えてきます。 見える化、DX化により、適切なアクションを取ることが重要です。 本レポートでは見える化とDX化のポイントを解説します! https://www.funaisoken.co.jp/dl-contents/smart-factory__02003_S045   ■関連するセミナーのご案内 製造業の為のAI・IoT活用戦略!経営者セミナー https://www.funaisoken.co.jp/seminar/102603 職人技術に依存している製造現場でAI化・IoT化・ロボット化・デジタル化できる取組事例が学べる! ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/07 (木) 13:00~15:00 2023/09/12 (火) 13:00~15:00 2023/09/14 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 AI・IoT取組事例講座編 「全国各地で見られる製造業でのAI・IoT取組事例」 AI・IoT活用戦略講座編 「製造業経営者が取り組むべきAI・IoT活用戦略」 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/102603 いつも当コラムをご愛読いただきありがとうございます。 1.生成AIとは何か?生成AIのインパクト 今、話題の生成AIですが、我々の身の回りはすでに生成AIで作られたものでとり囲まれているかもしれません。 インターネットで目にする文章、画像、音声などは実は今、私たちが知らないうちに大量にAIで作られています。 生成AIとは、簡単にいうと、「様々なコンテンツを自動で大量に生成できるAI」のことを指します。 従来の「AI」と「生成AI」の違いについては、「オリジナルコンテンツ創造の可否」にあります。 従来AIは「学習済みのデータの中から適切な回答を探して提示する性質」を持っていましたが、生成AIは「0から1を生み出す性質(オリジナルコンテンツを創出)」が特徴です。 AIが、作家が作ったような文章を書き、芸術家が描くような画像を生成してくれます。 生成AIは人間の仕事や作業をサポートしてくれる(短時間で生成する)ツールとして急速に注目を集め、利用されています。 2.AIはやる/やらないではなく、来るもの よく社内で「AIを活用するか、しないか」を議論されているという話聞きます。 これは、インターネット到来時代に「インターネットを使うか、使わないか」を議論していることと同じです。 人間は便利なものは必ず使うようになります。 「スマホよりガラケーの方がいい」と言っていた方々も、今は全員スマホを使っています。 人間は利便性がよい方に確実に転がります。 「AIは使えない!」という方々も良くいますが、それはAI自体をよく知らないか、使い方を間違えている方々です。 <ハサミで金棒は切れません> AIが使えないという方々は「ハサミで金棒を切って、使えない」と言っているに過ぎません。 AIは万能ではありません。 使い方があり、使えないというのは、そもそも使い方を理解していないのです。 AIを正しく理解して、正しく使えば、便利なものには間違いありません。 ただ、業務利用するにはきちんとした知識が必要です。 知識もないまま、AIを扱うと間違いなく痛い目に遭うでしょう。 3.AIと仲良く暮らすには? 私たちは誰もかれも「現状が好きな生き物」です。 携帯電話が到来した時、「家に電話すれば済む。用事があれば公衆電話があるし、出掛けているときに捕まりたくない」と私たちは思っていました。 インターネットが到来した時も、「やっぱり紙がいい。パソコンは難しい・わかりづらい」と私たちは思っていました。 スマホが到来した時も、「ガラケーで十分。スマホはわかりづらい」と私たちは思っていました。 新しいものが出てきた時に、私たちは必ず「今のままで良い」と思うのです。 ただ、手のひら返しをするタイミングは思いのほかすぐにやってくるのです。 AIがわからないという方は、とりあえずchat-GPTサービスをまずは試してください。 もしかしたら、「役に立たない。 インターネットで検索すれば十分」と思うかもしれません。 それでもいろいろなことを試して見てください。 いろいろな可能性が見えるかもしれません。 すでに身近にAIサービスは見えるもの・見えないものたくさんリリースされています。 現状のAI技術にたくさん触れて、今のAIのレベルを確認してください。 幸いAIの進化はとても早く、1年も経てば、別の世界を見せてくれます。 頑張って、抗っても、拒絶してもAIの時代はやってきます。 事実、すでに身の回りの文章や画像が、人が作ったのか、AIが作ったのか、誰にもわかりません。 この文章自体、AIが書いているかもしれません。 確実なことは「AIが便利なものであること」「どの会社も人材不足」ということです。 この技術を皆さんのビジネスにどう有意義に生かしてくか、ただそれだけなのだと思います。 最後までお読みいただきありがとうございました。   製造業経営者向け“基幹システム再構築戦略”解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 多くの製造業は、全体としての原価・利益は見えているが、個別の実際原価は、属人化している業務で運用されている事で見えにくくなっています。製品別個別、取引先個別、工程別個別の実際原価を把握することで実際の利益が見えてきます。 見える化、DX化により、適切なアクションを取ることが重要です。 本レポートでは見える化とDX化のポイントを解説します! https://www.funaisoken.co.jp/dl-contents/smart-factory__02003_S045   ■関連するセミナーのご案内 製造業の為のAI・IoT活用戦略!経営者セミナー https://www.funaisoken.co.jp/seminar/102603 職人技術に依存している製造現場でAI化・IoT化・ロボット化・デジタル化できる取組事例が学べる! ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/07 (木) 13:00~15:00 2023/09/12 (火) 13:00~15:00 2023/09/14 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 AI・IoT取組事例講座編 「全国各地で見られる製造業でのAI・IoT取組事例」 AI・IoT活用戦略講座編 「製造業経営者が取り組むべきAI・IoT活用戦略」 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/102603

製造業品質管理の改善活動とDX化事例

2023.08.18

今回は、製造業における品質管理の重要性とDX化による品質改善活動というテーマについてお伝えさせていただきます。 1.製造業における品質管理の重要性 まず品質の定義として、社内で設計された製品を設計通りに製造しお客様に提供される製品の品質のことで、要求品質を満足する必要があります。 つまりは「設計品質」=「製造品質」と定義できます。 この品質においては不適合の製品を万が一流出してしまった場合、単なる不良品として再製作だけにとどまらず、不具合内容によっては事故や訴訟問題に発展してしまう可能性があります。 そうなった場合、会社にとって大きな信頼と売上と顧客を失うことになり得る可能性があります。 こうした事態を回避し顧客満足度を高めるには、商品・サービスの品質向上に勤めることが非常に大切です。 そのための品質の改善ポイントを列記します。 (ポイント1)5Sの運用・活動維持 ⇒整理・整頓・清掃・清潔・しつけ (ポイント2)4Mの管理・メンテナンス ⇒人(Man)、機械(Machine)、材料(Material)、方法(Method) (ポイント3)DX化(デジタルトランスフォーメーション)による実績収集・分析・活動記録 (ポイント4)手順書の整備・業務標準化 ⇒作業標準、教育、社内会議による情報共有 今回はポイントの3つ目品質管理における「DX化」について詳しくお伝えいたします。 2.品質管理における改善活動 品質管理においてDX化を進めるのにあたり、まずは社内の仕組みや体制つくりが重要となります。 いきなりDX化で改善とはなりませんので、まずは基礎を固めてからスタートすることが良いでしょう。 そのポイントを列記します。 ①品質マネジメントシステム(QMS)の構築 QMSを導入し、品質保証体制を整備することが重要です。 社内の品質方針や手順、KPIを策定し、品質管理の方向性を明確にして全社に周知させます。 ②プロセス改善 改善活動におけるプロセスを見直し、改善を行うことが必要です。 例えば不良率が多い工程を特定し、原因を分析して改善方針を策定します。 ③品質情報の収集と分析 生産現場や顧客からの不適合品発生情報やクレーム情報を収集し、品質データを解析します。 各種品質データを分析し、課題を特定し、実行計画を策定します。 ④トレーニング・教育の実施 生産ラインでの品質管理の観点を徹底し、従業員の教育を実施します。 また、社内教育の記録を取り、訓練後に評価することで、意識の向上を図ります。 ⑤顧客満足度の向上 顧客満足度を向上させるための再発防止策の徹底に努めます。 発生した不適合品の原因には様々な改善ヒントがありますので、顧客とのコミュニケーションを密にし、 クレーム対応から製品の特性や設備や作業等の見直しを行い顧客ニーズの理解に繋げます。 ⑥PDCAサイクルの徹底 PDCAサイクルを活用し、改善計画を実施します。 目標の設定、プランニング、実行、評価の順序で改善計画を進め、定期的な改善を行います。 まとめとして、製造業において品質管理は、顧客からの信頼性を高めるために重要なポイントになりますので 以上の点を考慮し地道な品質活動を維持継続していくことが大切です。 ここからは、品質管理のDX化における事例を見ていきましょう。 3.品質管理のDX化事例 ①工場IoTの導入 生産ラインの設備にセンサーを設置し、生産データをリアルタイムで可視化することで、機器トラブルや生産ラインの停止を事前に予測することができます。 ②AIの活用 製造プロセスにAI技術を導入することで、不良品の自動検査や品質管理の徹底など、品質レベルの向上が可能になります。 ③ビッグデータの活用 多種多様な品質情報を収集し、データを分析することで、プロセスや機器の改善点を特定することができ ます。 ④プロセスの可視化 製造プロセスを可視化することで、製品の品質管理、在庫管理、納期管理、販売管理など、様々なビジネスプロセスの改善につなげることができます。 4.品質管理のデータ分析とプロセス 前述の様々な手法がある中で、品質管理におけるデータ分析は、生産プロセスや製品の品質に関する情報を数値化、分析し、品質レベルの向上に繋げるための取り組みで最も重要な施策になります。 以下に、データ分析を活用した品質管理の事例をいくつか紹介します。 ①品質改善に役立つデータの収集と解析 生産ラインのスピード、不良数、不良原因などのデータを収集し、何らかのパターンを発見し、その原因を追究することができます。 このデータを分析するとどの生産過程やどの機械がどの程度の不良を生産しているかを把握し、品質改善計画を策定することができます。 一般的にはExcel等で台帳管理を行っている企業も見受けられますが、各種パッケージによるシステム化も有効な手段と言えます。 ②ビッグデータ分析による予測と改善 複数の製造バッチや機器のデータを使用して、不良品の要因を特定すると同時に、将来の製品欠陥の予測ができます。 予測された品質欠陥に対処するため、製造プロセスを改善することができます。 ③AIによる検査とデータ分析 非破壊検査やビジョンセンサーを使用して、データを収集し、AIによって不良品を検出することができます。 不良品の原因を特定し、各生産プロセスを改善することで、品質の向上に繋げます。 ④SPC(統計的工程管理)による品質管理の追跡 SPCでは、生産前及び生産後のサンプリングを行い、データを抽出、統計解析することで品質改善を追跡することができます。また、プロセスの制御限界を把握し、品質レベルを維持・改善するために必要な製造プロセスを革新することができます。 以上のように、データ分析を組み合わせた品質管理では、生産ラインの品質を確保するための正確かつ迅速な試験を行い、不良品の発生を防止することが可能となります。 5.まとめ 最後に、まとめとして品質改善活動は、企業の売上や信頼と言った重要な要素の他に、品質管理を実施することで、不良数を削減し、生産コストを削減することができます。 昨今は様々なDX化による改善活動ができますので、ぜひ取り組んでみてはいかがでしょうか。 このコラムが皆様の工場にお役に立てれば幸いです。 最後までお読みいただきありがとうございました。   製造業経営者向け“基幹システム再構築戦略”解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 多くの製造業は、全体としての原価・利益は見えているが、個別の実際原価は、属人化している業務で運用されている事で見えにくくなっています。製品別個別、取引先個別、工程別個別の実際原価を把握することで実際の利益が見えてきます。 見える化、DX化により、適切なアクションを取ることが重要です。 本レポートでは見える化とDX化のポイントを解説します! https://www.funaisoken.co.jp/dl-contents/smart-factory__02003_S045   ■関連するセミナーのご案内 製造業の為のAI・IoT活用戦略!経営者セミナー https://www.funaisoken.co.jp/seminar/102603 職人技術に依存している製造現場でAI化・IoT化・ロボット化・デジタル化できる取組事例が学べる! ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/07 (木) 13:00~15:00 2023/09/12 (火) 13:00~15:00 2023/09/14 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 AI・IoT取組事例講座編 「全国各地で見られる製造業でのAI・IoT取組事例」 AI・IoT活用戦略講座編 「製造業経営者が取り組むべきAI・IoT活用戦略」 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/102603 いつも当コラムをご愛読いただきありがとうございます。 今回は、製造業における品質管理の重要性とDX化による品質改善活動というテーマについてお伝えさせていただきます。 1.製造業における品質管理の重要性 まず品質の定義として、社内で設計された製品を設計通りに製造しお客様に提供される製品の品質のことで、要求品質を満足する必要があります。 つまりは「設計品質」=「製造品質」と定義できます。 この品質においては不適合の製品を万が一流出してしまった場合、単なる不良品として再製作だけにとどまらず、不具合内容によっては事故や訴訟問題に発展してしまう可能性があります。 そうなった場合、会社にとって大きな信頼と売上と顧客を失うことになり得る可能性があります。 こうした事態を回避し顧客満足度を高めるには、商品・サービスの品質向上に勤めることが非常に大切です。 そのための品質の改善ポイントを列記します。 (ポイント1)5Sの運用・活動維持 ⇒整理・整頓・清掃・清潔・しつけ (ポイント2)4Mの管理・メンテナンス ⇒人(Man)、機械(Machine)、材料(Material)、方法(Method) (ポイント3)DX化(デジタルトランスフォーメーション)による実績収集・分析・活動記録 (ポイント4)手順書の整備・業務標準化 ⇒作業標準、教育、社内会議による情報共有 今回はポイントの3つ目品質管理における「DX化」について詳しくお伝えいたします。 2.品質管理における改善活動 品質管理においてDX化を進めるのにあたり、まずは社内の仕組みや体制つくりが重要となります。 いきなりDX化で改善とはなりませんので、まずは基礎を固めてからスタートすることが良いでしょう。 そのポイントを列記します。 ①品質マネジメントシステム(QMS)の構築 QMSを導入し、品質保証体制を整備することが重要です。 社内の品質方針や手順、KPIを策定し、品質管理の方向性を明確にして全社に周知させます。 ②プロセス改善 改善活動におけるプロセスを見直し、改善を行うことが必要です。 例えば不良率が多い工程を特定し、原因を分析して改善方針を策定します。 ③品質情報の収集と分析 生産現場や顧客からの不適合品発生情報やクレーム情報を収集し、品質データを解析します。 各種品質データを分析し、課題を特定し、実行計画を策定します。 ④トレーニング・教育の実施 生産ラインでの品質管理の観点を徹底し、従業員の教育を実施します。 また、社内教育の記録を取り、訓練後に評価することで、意識の向上を図ります。 ⑤顧客満足度の向上 顧客満足度を向上させるための再発防止策の徹底に努めます。 発生した不適合品の原因には様々な改善ヒントがありますので、顧客とのコミュニケーションを密にし、 クレーム対応から製品の特性や設備や作業等の見直しを行い顧客ニーズの理解に繋げます。 ⑥PDCAサイクルの徹底 PDCAサイクルを活用し、改善計画を実施します。 目標の設定、プランニング、実行、評価の順序で改善計画を進め、定期的な改善を行います。 まとめとして、製造業において品質管理は、顧客からの信頼性を高めるために重要なポイントになりますので 以上の点を考慮し地道な品質活動を維持継続していくことが大切です。 ここからは、品質管理のDX化における事例を見ていきましょう。 3.品質管理のDX化事例 ①工場IoTの導入 生産ラインの設備にセンサーを設置し、生産データをリアルタイムで可視化することで、機器トラブルや生産ラインの停止を事前に予測することができます。 ②AIの活用 製造プロセスにAI技術を導入することで、不良品の自動検査や品質管理の徹底など、品質レベルの向上が可能になります。 ③ビッグデータの活用 多種多様な品質情報を収集し、データを分析することで、プロセスや機器の改善点を特定することができ ます。 ④プロセスの可視化 製造プロセスを可視化することで、製品の品質管理、在庫管理、納期管理、販売管理など、様々なビジネスプロセスの改善につなげることができます。 4.品質管理のデータ分析とプロセス 前述の様々な手法がある中で、品質管理におけるデータ分析は、生産プロセスや製品の品質に関する情報を数値化、分析し、品質レベルの向上に繋げるための取り組みで最も重要な施策になります。 以下に、データ分析を活用した品質管理の事例をいくつか紹介します。 ①品質改善に役立つデータの収集と解析 生産ラインのスピード、不良数、不良原因などのデータを収集し、何らかのパターンを発見し、その原因を追究することができます。 このデータを分析するとどの生産過程やどの機械がどの程度の不良を生産しているかを把握し、品質改善計画を策定することができます。 一般的にはExcel等で台帳管理を行っている企業も見受けられますが、各種パッケージによるシステム化も有効な手段と言えます。 ②ビッグデータ分析による予測と改善 複数の製造バッチや機器のデータを使用して、不良品の要因を特定すると同時に、将来の製品欠陥の予測ができます。 予測された品質欠陥に対処するため、製造プロセスを改善することができます。 ③AIによる検査とデータ分析 非破壊検査やビジョンセンサーを使用して、データを収集し、AIによって不良品を検出することができます。 不良品の原因を特定し、各生産プロセスを改善することで、品質の向上に繋げます。 ④SPC(統計的工程管理)による品質管理の追跡 SPCでは、生産前及び生産後のサンプリングを行い、データを抽出、統計解析することで品質改善を追跡することができます。また、プロセスの制御限界を把握し、品質レベルを維持・改善するために必要な製造プロセスを革新することができます。 以上のように、データ分析を組み合わせた品質管理では、生産ラインの品質を確保するための正確かつ迅速な試験を行い、不良品の発生を防止することが可能となります。 5.まとめ 最後に、まとめとして品質改善活動は、企業の売上や信頼と言った重要な要素の他に、品質管理を実施することで、不良数を削減し、生産コストを削減することができます。 昨今は様々なDX化による改善活動ができますので、ぜひ取り組んでみてはいかがでしょうか。 このコラムが皆様の工場にお役に立てれば幸いです。 最後までお読みいただきありがとうございました。   製造業経営者向け“基幹システム再構築戦略”解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 多くの製造業は、全体としての原価・利益は見えているが、個別の実際原価は、属人化している業務で運用されている事で見えにくくなっています。製品別個別、取引先個別、工程別個別の実際原価を把握することで実際の利益が見えてきます。 見える化、DX化により、適切なアクションを取ることが重要です。 本レポートでは見える化とDX化のポイントを解説します! https://www.funaisoken.co.jp/dl-contents/smart-factory__02003_S045   ■関連するセミナーのご案内 製造業の為のAI・IoT活用戦略!経営者セミナー https://www.funaisoken.co.jp/seminar/102603 職人技術に依存している製造現場でAI化・IoT化・ロボット化・デジタル化できる取組事例が学べる! ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/07 (木) 13:00~15:00 2023/09/12 (火) 13:00~15:00 2023/09/14 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 AI・IoT取組事例講座編 「全国各地で見られる製造業でのAI・IoT取組事例」 AI・IoT活用戦略講座編 「製造業経営者が取り組むべきAI・IoT活用戦略」 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/102603

製造業のDX・IoT活用のコツ

2023.08.18

本コラムでは、中堅・中小製造業の企業におけるDX・IoT活用について、まずはどこからどの様にDX・IoTを導入していくべきか、わかりやすく説明させていただきます。 1.はじめに 前回のコラムで具体的にDXやIoT、AIを活用した業務の革新や改善を実施したいと考えたとき、まず『製造現場』へ導入すべきと提案しました。 なぜなら、『製造現場』の革新や改善が会社の売上や利益の向上に最も直結する業務だからです。 製造業は『モノを作る企業』です。 IoTを活用して製造現場を管理するには、まずは製造現場をIoT化する必要があります。 IoTを構成する主な要素は3つです。 ・デバイス:各種データを取得 ・ネットワーク:インターネットや社内システムへ接続 ・プラットフォーム・アプリケーション:データを蓄積・分析 そこで、今回は、その中の“ネットワーク:インターネットや社内システムへ接続”に関して具体的な手順を説明させていただきます。 2.IoTネットワーク基本構成 製造工程のIoT化を行う際のネットワーク基本構成例を示します。 ①センサーレベルネットワーク 生産ライン内のセンサーや工作機器を接続するためのネットワーク。 ここでは、センサーデバイスが収集したデータを集約し、ゲートウェイやコントローラーに送信します。センサーデバイス間の通信は、ワイヤレス(例:Bluetooth、Zigbee)または有線(例:RS-485/イーサーネット)通信を使用します。 ②ゲートウェイ/エッジデバイス センサーレベルから収集したデータを処理し、必要に応じて集計や解析を行うデバイス。 エッジコンピューティングを活用して、重要なデータの事前処理や処理を行うことで、クラウド上のサーバーやデータベースへのデータ転送量を削減できます。 ③ローカルネットワーク ゲートウェイやエッジデバイスと生産ライン内のシステムやコントローラーとの間の通信を可能にするネットワーク。 通信プロトコルは、イーサネット(Ethernet)を使用することが一般的です。 ④クラウドネットワーク(インターネット) ゲートウェイやエッジデバイスから収集したデータをクラウド上のサーバーやデータベースに転送するネットワーク。 通信はインターネットを介して行われます。このネットワークを構築する為に社内ネットワークに接続するか、専用回線(公衆回線など)を準備することになります。 ⑤クラウドプラットフォーム クラウド上のプラットフォームを使用して、データの保存、可視化、解析、予測などの処理を行います。 プラットフォームは通常、IoTデータを管理するためのAPIやダッシュボードを提供します。 物理的には各センサーや工作機器とゲートウェイをイーサーネットケーブルで接続(ローカルネットワーク)、 ゲートウェイを社内ネットワークとイーサーネットケーブルやWi-Fiで接続(インターネット)するケースが一般的です。(ゲートウェイは異なる2つのネットワークにそれぞれ接続します) 3.ゲートウェイ ゲートウェイはIoTネットワークを構成するうえで最も重要な機器です。 ゲートウェイとは、異なるネットワークを接続するコンピューター機器を意味します。 IoTゲートウェイは、センサーやデバイスから収集されるデータを収集・処理し、必要な情報をクラウド上のサーバーやデータベース、ローカルネットワークに送信するデバイスです。 以下に一般的なIoTゲートウェイの機能を示します。 ①データ収集 ゲートウェイは、接続されたセンサーやデバイスからデータを収集します。 このデータは、温度、湿度、振動、圧力などのセンサーからの情報や工作機器の制御情報などです。 ②データプリプロセッシング ゲートウェイは、必要にエッジコンピューティング(データを事前処理)を行います。 データの平滑化、平均化、異常検出、フォーマット変換などを行い、クラウド上のサーバーやデータベースへのデータ転送の最適化や遅延の削減を図ります。 リアルタイム処理が必要な予知保全などでは、AI機能を搭載したゲートウェイでエッジ処理を行うケースが多いです。 ③ローカルデータストレージ 一部のIoTゲートウェイは、収集したデータを一時的にローカルに保存することができます。これにより、ネットワークの断続性がある場合や、一時的なデータ保存が必要な場合に備えることができます。 ④通信管理 センサーやデバイスと通信するための通信プロトコルや通信方式を管理します。 必要に応じて有線(Ethernet、RS-485など)やワイヤレス(Wi-Fi、Bluetooth、Zigbeeなど)通信など、様々なプロトコルをサポートします。 ⑤セキュリティ機能 ゲートウェイは、データのセキュリティを確保するための機能を提供します。データの暗号化、認証、アクセス制御などのセキュリティ対策を実施し、外部からの不正アクセスを防ぎます。 ⑥プロトコル変換 異なるデバイスが異なる通信プロトコルを使用する場合、ゲートウェイはプロトコル変換を行って、デバイス間の通信を可能にします。 ⑦クラウドへのデータ転送 ゲートウェイは収集されたデータをクラウド上のサーバーやデータベースに転送します。このデータを活用し、クラウド上のアプリケーションで可視化、解析を行います。 ⑧リモート管理 ゲートウェイはリモートから制御可能な場合があり、リモートでのファームウェア更新や設定変更などを行う様にすることが可能です。 ⑨デバイスの管理 ゲートウェイは、接続されているデバイスやセンサーの状態を監視し、必要に応じてアラート発信、工程・機器停止、障害対処を行います。 IoTゲートウェイはクラウド上のサーバーやデータベースと通信する為インターネット網へ接続するケースが多いです。 その主な接続方法下記2つです。通信費用や設置環境に応じて選択します。 ①ワイヤレス接続 - セルラー(3G/4G/5G) セルラーネットワーク(公衆回線)を使用してIoTゲートウェイをインターネットに接続します。 セルラー(公衆回線)接続は広い範囲で利用可能で、移動性も有します。 リモートエリアや移動するデバイスに適していますが、データ通信料がかかる可能性があります。 ②有線接続 - DSL/Cable/光ファイバー 一般的な家庭やオフィス環境では、DSLやケーブル、光ファイバーなどの有線ブロードバンド接続を使用してIoTゲートウェイをインターネットに接続することが可能です。 4.まとめ 今回のコラムでは、“中堅・中小製造業のDX・IoT活用のコツ~製造工程のIoT化手順(ネットワーク構築)~”につきまして簡単ではありますが説明させていただきました。 次回は、“製造工程のIoT化手順(クラウドプラットフォーム・アプリケーション)“につきまして詳しく説明していく予定です。 今回の紹介した内容をご検討頂き、自社での製造工程のIoT化導入検討や、過去に断念されたIoT化を再度進めていただければ幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。 前回のコラムはこちら https://smart-factory.funaisoken.co.jp/230704/   製造業経営者向け“基幹システム再構築戦略”解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 多くの製造業は、全体としての原価・利益は見えているが、個別の実際原価は、属人化している業務で運用されている事で見えにくくなっています。製品別個別、取引先個別、工程別個別の実際原価を把握することで実際の利益が見えてきます。 見える化、DX化により、適切なアクションを取ることが重要です。 本レポートでは見える化とDX化のポイントを解説します! https://www.funaisoken.co.jp/dl-contents/smart-factory__02003_S045   ■関連するセミナーのご案内 製造業の為のAI・IoT活用戦略!経営者セミナー https://www.funaisoken.co.jp/seminar/102603 職人技術に依存している製造現場でAI化・IoT化・ロボット化・デジタル化できる取組事例が学べる! ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/07 (木) 13:00~15:00 2023/09/12 (火) 13:00~15:00 2023/09/14 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 AI・IoT取組事例講座編 「全国各地で見られる製造業でのAI・IoT取組事例」 AI・IoT活用戦略講座編 「製造業経営者が取り組むべきAI・IoT活用戦略」 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/102603 いつも当コラムをご愛読いただきありがとうございます。 本コラムでは、中堅・中小製造業の企業におけるDX・IoT活用について、まずはどこからどの様にDX・IoTを導入していくべきか、わかりやすく説明させていただきます。 1.はじめに 前回のコラムで具体的にDXやIoT、AIを活用した業務の革新や改善を実施したいと考えたとき、まず『製造現場』へ導入すべきと提案しました。 なぜなら、『製造現場』の革新や改善が会社の売上や利益の向上に最も直結する業務だからです。 製造業は『モノを作る企業』です。 IoTを活用して製造現場を管理するには、まずは製造現場をIoT化する必要があります。 IoTを構成する主な要素は3つです。 ・デバイス:各種データを取得 ・ネットワーク:インターネットや社内システムへ接続 ・プラットフォーム・アプリケーション:データを蓄積・分析 そこで、今回は、その中の“ネットワーク:インターネットや社内システムへ接続”に関して具体的な手順を説明させていただきます。 2.IoTネットワーク基本構成 製造工程のIoT化を行う際のネットワーク基本構成例を示します。 ①センサーレベルネットワーク 生産ライン内のセンサーや工作機器を接続するためのネットワーク。 ここでは、センサーデバイスが収集したデータを集約し、ゲートウェイやコントローラーに送信します。センサーデバイス間の通信は、ワイヤレス(例:Bluetooth、Zigbee)または有線(例:RS-485/イーサーネット)通信を使用します。 ②ゲートウェイ/エッジデバイス センサーレベルから収集したデータを処理し、必要に応じて集計や解析を行うデバイス。 エッジコンピューティングを活用して、重要なデータの事前処理や処理を行うことで、クラウド上のサーバーやデータベースへのデータ転送量を削減できます。 ③ローカルネットワーク ゲートウェイやエッジデバイスと生産ライン内のシステムやコントローラーとの間の通信を可能にするネットワーク。 通信プロトコルは、イーサネット(Ethernet)を使用することが一般的です。 ④クラウドネットワーク(インターネット) ゲートウェイやエッジデバイスから収集したデータをクラウド上のサーバーやデータベースに転送するネットワーク。 通信はインターネットを介して行われます。このネットワークを構築する為に社内ネットワークに接続するか、専用回線(公衆回線など)を準備することになります。 ⑤クラウドプラットフォーム クラウド上のプラットフォームを使用して、データの保存、可視化、解析、予測などの処理を行います。 プラットフォームは通常、IoTデータを管理するためのAPIやダッシュボードを提供します。 物理的には各センサーや工作機器とゲートウェイをイーサーネットケーブルで接続(ローカルネットワーク)、 ゲートウェイを社内ネットワークとイーサーネットケーブルやWi-Fiで接続(インターネット)するケースが一般的です。(ゲートウェイは異なる2つのネットワークにそれぞれ接続します) 3.ゲートウェイ ゲートウェイはIoTネットワークを構成するうえで最も重要な機器です。 ゲートウェイとは、異なるネットワークを接続するコンピューター機器を意味します。 IoTゲートウェイは、センサーやデバイスから収集されるデータを収集・処理し、必要な情報をクラウド上のサーバーやデータベース、ローカルネットワークに送信するデバイスです。 以下に一般的なIoTゲートウェイの機能を示します。 ①データ収集 ゲートウェイは、接続されたセンサーやデバイスからデータを収集します。 このデータは、温度、湿度、振動、圧力などのセンサーからの情報や工作機器の制御情報などです。 ②データプリプロセッシング ゲートウェイは、必要にエッジコンピューティング(データを事前処理)を行います。 データの平滑化、平均化、異常検出、フォーマット変換などを行い、クラウド上のサーバーやデータベースへのデータ転送の最適化や遅延の削減を図ります。 リアルタイム処理が必要な予知保全などでは、AI機能を搭載したゲートウェイでエッジ処理を行うケースが多いです。 ③ローカルデータストレージ 一部のIoTゲートウェイは、収集したデータを一時的にローカルに保存することができます。これにより、ネットワークの断続性がある場合や、一時的なデータ保存が必要な場合に備えることができます。 ④通信管理 センサーやデバイスと通信するための通信プロトコルや通信方式を管理します。 必要に応じて有線(Ethernet、RS-485など)やワイヤレス(Wi-Fi、Bluetooth、Zigbeeなど)通信など、様々なプロトコルをサポートします。 ⑤セキュリティ機能 ゲートウェイは、データのセキュリティを確保するための機能を提供します。データの暗号化、認証、アクセス制御などのセキュリティ対策を実施し、外部からの不正アクセスを防ぎます。 ⑥プロトコル変換 異なるデバイスが異なる通信プロトコルを使用する場合、ゲートウェイはプロトコル変換を行って、デバイス間の通信を可能にします。 ⑦クラウドへのデータ転送 ゲートウェイは収集されたデータをクラウド上のサーバーやデータベースに転送します。このデータを活用し、クラウド上のアプリケーションで可視化、解析を行います。 ⑧リモート管理 ゲートウェイはリモートから制御可能な場合があり、リモートでのファームウェア更新や設定変更などを行う様にすることが可能です。 ⑨デバイスの管理 ゲートウェイは、接続されているデバイスやセンサーの状態を監視し、必要に応じてアラート発信、工程・機器停止、障害対処を行います。 IoTゲートウェイはクラウド上のサーバーやデータベースと通信する為インターネット網へ接続するケースが多いです。 その主な接続方法下記2つです。通信費用や設置環境に応じて選択します。 ①ワイヤレス接続 - セルラー(3G/4G/5G) セルラーネットワーク(公衆回線)を使用してIoTゲートウェイをインターネットに接続します。 セルラー(公衆回線)接続は広い範囲で利用可能で、移動性も有します。 リモートエリアや移動するデバイスに適していますが、データ通信料がかかる可能性があります。 ②有線接続 - DSL/Cable/光ファイバー 一般的な家庭やオフィス環境では、DSLやケーブル、光ファイバーなどの有線ブロードバンド接続を使用してIoTゲートウェイをインターネットに接続することが可能です。 4.まとめ 今回のコラムでは、“中堅・中小製造業のDX・IoT活用のコツ~製造工程のIoT化手順(ネットワーク構築)~”につきまして簡単ではありますが説明させていただきました。 次回は、“製造工程のIoT化手順(クラウドプラットフォーム・アプリケーション)“につきまして詳しく説明していく予定です。 今回の紹介した内容をご検討頂き、自社での製造工程のIoT化導入検討や、過去に断念されたIoT化を再度進めていただければ幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。 前回のコラムはこちら https://smart-factory.funaisoken.co.jp/230704/   製造業経営者向け“基幹システム再構築戦略”解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 多くの製造業は、全体としての原価・利益は見えているが、個別の実際原価は、属人化している業務で運用されている事で見えにくくなっています。製品別個別、取引先個別、工程別個別の実際原価を把握することで実際の利益が見えてきます。 見える化、DX化により、適切なアクションを取ることが重要です。 本レポートでは見える化とDX化のポイントを解説します! https://www.funaisoken.co.jp/dl-contents/smart-factory__02003_S045   ■関連するセミナーのご案内 製造業の為のAI・IoT活用戦略!経営者セミナー https://www.funaisoken.co.jp/seminar/102603 職人技術に依存している製造現場でAI化・IoT化・ロボット化・デジタル化できる取組事例が学べる! ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/07 (木) 13:00~15:00 2023/09/12 (火) 13:00~15:00 2023/09/14 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 AI・IoT取組事例講座編 「全国各地で見られる製造業でのAI・IoT取組事例」 AI・IoT活用戦略講座編 「製造業経営者が取り組むべきAI・IoT活用戦略」 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/102603

生産管理のQCD

2023.08.07

1.はじめに 皆さんが会計数値を目にすることはよくあることだと思います。しかし、これだけで生産活動の管理は十分でしょうか? 会計数値は生産活動の結果から発生するコスト項目を集計した数値です。会計上把握された数値からでは発生源を把握しきれず、数字から類推しかねません。 また、集計するのに時間が掛かるため迅速な行動ができません。会計数値になる前に、現場の生産活動に直結した指標で目標や基準値を設定・管理してはじめて迅速な行動が取れます。 会計数値に影響を与える現場指標を導き出し、管理指標にする必要があります。主にQCDと在庫などの資産に関連する指標を作る必要があるでしょう。 2.品質力(Q)の指標 製品の品質を維持し、ムダを生み出さないような品質管理指標を設定します。 良品率(不良率) 収率 歩留率 これらの指標は実績投入と産出との差異の比率をとることで測定されます。品質指標        を管理して品質の向上に努めることは重要です。 3.生産効率(C)の指標 生産効率の指標はいろいろあります。現場に合った生産性指標を設定します。 出来高(計画対・昨年対・人当・機械当) 稼働率(人員・設備) 時間(実作業・残業) 作業効率(標準対実作業) このほかにもありますが、生産性は製造業では重要な指標です。正しく測定し、改善していくことが重要です。 4.納期(D)の指標工場の納期達成力を示す納期遵守指標を設定します。 計画遵守率 納期遵守率 緊急受注数 まとめ(先行)生産数・受注残数 納期変更回数 このような指標を管理することは緊急生産やキャンセル対応などの現場の混乱を解消するために重要です。 5.資産効率の指標 資産効率を測定する指標には⑴在庫効率と⑵固定資産効率があります。 ⑴在庫効率 棚卸資産額 在庫回転率 滞留在庫(数・金額) ⑵固定資産効率 設備稼働率 減価償却実施率 残存耐用年数 設備使用年数 いかがでしたか?皆さんの工場では上記のような管理指標はありますか?実際、管理指標が不明確な会社はたくさんあります。ただ、たくさんの管理指標があるからといてレベルが高いかといえばそうでもありません。過去にあった事象で指標をとることにしたが解決して必要なくなったのに指標をとり続けており実際は誰も使っていないといったこともあります。組織別に多くの指標を設定し、お互いの定義が共通化してない中で、お互いが基準と違うという議論をしたり、自部門の指標をよくしようと部分最適に陥ったりすることもあります。 工場を改善するうえで指標を設定するには指標を構造化して優先順位を決めて管理することが必要となります。バランススコアカードで整理するのもよいでしょう。 また、指標の数字は正確でなければなりません。今、IoTやAIなどの新しいテクノロジーの出現によって、必要な情報が必要な時に正確に取得でき活用することが可能になってきました。 いかがでしょう? 上記内容について、より具体的に詳細をお知りになりたい場合はお気軽に弊社にご相談ください。 このコラムが皆様の工場にお役に立てれば幸いです。 最後までお読みいただきありがとうございました。   ■関連するセミナーのご案内 製造業の為のAI・IoT活用戦略!経営者セミナー https://www.funaisoken.co.jp/seminar/102603 職人技術に依存している製造現場でAI化・IoT化・ロボット化・デジタル化できる取組事例が学べる! ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/07 (木) 13:00~15:00 2023/09/12 (火) 13:00~15:00 2023/09/14 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 AI・IoT取組事例講座編 「全国各地で見られる製造業でのAI・IoT取組事例」 AI・IoT活用戦略講座編 「製造業経営者が取り組むべきAI・IoT活用戦略」 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/102603   見積業務にAI導入して受注率UP&利益率UP! 特注・一品一様生産 機械加工業の為の見積AI 社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/101882 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/08/24 (木) 13:00~15:00 2023/08/28 (月) 13:00~15:00 2023/08/29 (火) 13:00~15:00 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/101882 1.はじめに 皆さんが会計数値を目にすることはよくあることだと思います。しかし、これだけで生産活動の管理は十分でしょうか? 会計数値は生産活動の結果から発生するコスト項目を集計した数値です。会計上把握された数値からでは発生源を把握しきれず、数字から類推しかねません。 また、集計するのに時間が掛かるため迅速な行動ができません。会計数値になる前に、現場の生産活動に直結した指標で目標や基準値を設定・管理してはじめて迅速な行動が取れます。 会計数値に影響を与える現場指標を導き出し、管理指標にする必要があります。主にQCDと在庫などの資産に関連する指標を作る必要があるでしょう。 2.品質力(Q)の指標 製品の品質を維持し、ムダを生み出さないような品質管理指標を設定します。 良品率(不良率) 収率 歩留率 これらの指標は実績投入と産出との差異の比率をとることで測定されます。品質指標        を管理して品質の向上に努めることは重要です。 3.生産効率(C)の指標 生産効率の指標はいろいろあります。現場に合った生産性指標を設定します。 出来高(計画対・昨年対・人当・機械当) 稼働率(人員・設備) 時間(実作業・残業) 作業効率(標準対実作業) このほかにもありますが、生産性は製造業では重要な指標です。正しく測定し、改善していくことが重要です。 4.納期(D)の指標工場の納期達成力を示す納期遵守指標を設定します。 計画遵守率 納期遵守率 緊急受注数 まとめ(先行)生産数・受注残数 納期変更回数 このような指標を管理することは緊急生産やキャンセル対応などの現場の混乱を解消するために重要です。 5.資産効率の指標 資産効率を測定する指標には⑴在庫効率と⑵固定資産効率があります。 ⑴在庫効率 棚卸資産額 在庫回転率 滞留在庫(数・金額) ⑵固定資産効率 設備稼働率 減価償却実施率 残存耐用年数 設備使用年数 いかがでしたか?皆さんの工場では上記のような管理指標はありますか?実際、管理指標が不明確な会社はたくさんあります。ただ、たくさんの管理指標があるからといてレベルが高いかといえばそうでもありません。過去にあった事象で指標をとることにしたが解決して必要なくなったのに指標をとり続けており実際は誰も使っていないといったこともあります。組織別に多くの指標を設定し、お互いの定義が共通化してない中で、お互いが基準と違うという議論をしたり、自部門の指標をよくしようと部分最適に陥ったりすることもあります。 工場を改善するうえで指標を設定するには指標を構造化して優先順位を決めて管理することが必要となります。バランススコアカードで整理するのもよいでしょう。 また、指標の数字は正確でなければなりません。今、IoTやAIなどの新しいテクノロジーの出現によって、必要な情報が必要な時に正確に取得でき活用することが可能になってきました。 いかがでしょう? 上記内容について、より具体的に詳細をお知りになりたい場合はお気軽に弊社にご相談ください。 このコラムが皆様の工場にお役に立てれば幸いです。 最後までお読みいただきありがとうございました。   ■関連するセミナーのご案内 製造業の為のAI・IoT活用戦略!経営者セミナー https://www.funaisoken.co.jp/seminar/102603 職人技術に依存している製造現場でAI化・IoT化・ロボット化・デジタル化できる取組事例が学べる! ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/07 (木) 13:00~15:00 2023/09/12 (火) 13:00~15:00 2023/09/14 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 AI・IoT取組事例講座編 「全国各地で見られる製造業でのAI・IoT取組事例」 AI・IoT活用戦略講座編 「製造業経営者が取り組むべきAI・IoT活用戦略」 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/102603   見積業務にAI導入して受注率UP&利益率UP! 特注・一品一様生産 機械加工業の為の見積AI 社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/101882 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/08/24 (木) 13:00~15:00 2023/08/28 (月) 13:00~15:00 2023/08/29 (火) 13:00~15:00 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/101882

製造業で補助金活用をお薦めする理由

2023.07.31

1.製造業をさらなる成功に導くための補助金活用 本コラムでは、御社の製造業をさらなる成功に導くために、補助金を活用すべき理由について説明させていただきます。新たな設備購入(増設、更新)、人財の確保(増員、賃上げ、プロ人財)、自社の技術革新(長所進展)を追求することは、企業にとって大きな財務的負担を伴います。しかし、返済不要な公的補助金で一部分でも賄うことはこれらの負担を軽減し、事業を新たな段階へと進展させる強力な手段となるのです。 以下で具体的に補助金を活用することで実現来る可能性があることについて説明します。是非、ご一読いただき、補助金を活用して発展した自社を想像し、具体的に検討するきっかけにしていただきたいです。 2.補助金活用をおすすめする理由 (1)技術開発と革新の推進 製造業は、技術の進歩に伴って変革を余儀なくされています。AI活用、IoT、ロボット化・自動化といった最先端の技術は、競争力を高めるため、維持するための必須項目です。しかしこれらの導入は高額なコストを必要とします。ここで補助金が役立ちます。これらを活用することで、新たな研究開発、技術、またはプロセスの開発を促進することができ、製品の品質を改善し、効率を向上させ、競争力を強化することが可能となるのです。 (2)資本投資を活性化 製造業にとって、新しい設備や機器の導入、あるいは新たな工場施設の設立は、生産能力を拡大し、生産効率を向上させ、長期的にはコストを削減する絶好の機会となります。しかし、これらには大きな初期投資が必要です。補助金はこれらの財政負担を軽減し、計画を現実のものにするための資金源となるのです。もちろん、補助金は補助事業が完了したのちに、資金を受け取ることが出来るので、それまでの間は自己資本、または金融機関から融資を受ける必要があります。しかし、補助金を受けるレベルの事業計画をもっている企業であれば、金融機関側でも融資をしたいはすです。 (3)地域雇用の創出 補助金を利用することで、新たな雇用機会を創出し、地域経済を強化することも可能です。地方自治体や政府はしばしば、地元の雇用を増やすために製造業に補助金を提供します。これにより、新たな人財を確保し、会社の成長を後押しすることができます。 (4)ビジネスリスクの軽減 新製品の開発や新市場への進出は、必ずしも成功するとは限らず、リスクが伴います。補助金はそのリスクを軽減し、企業が新しい機会を追求するのを助けます。補助金により、大胆な試みを支援し、失敗した場合の影響を緩和することができます。 しかし、補助金の申請プロセスや要件は複雑であり、しっかりと内容を理解し、適切な計画を立て、事業計画書を作成する必要があります。補助金を活用するためには、まず補助金の存在を知り、その要件を理解し、申請手続きを進めることが必要です。そして、適用可能な補助金を見つけるためには、自治体や業界団体、専門家とのコミュニケーションが重要となります。 補助金は、新たな事業展開や成長の機会を追求するための強力な道具となります。しかし、その活用は計画と準備を必要とします。補助金をうまく活用し、ビジネスを次のレベルへと進めるために、今すぐその準備を始めましょう。 3.まとめ 今回のコラムでは、製造業が補助金を活用する理由について、具体的に説明をさせていただきました。今回の紹介した内容を参考に、自社の成長戦略・事業計画のなかで、補助金を活用することも視野に入れていただければ幸いです。 上記内容について、より具体的に詳細をお知りになりたい場合、補助金紹介や補助金申請に必要な事業計画の立案、補助事業の計画立案・実行支援・アドバイスが必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 私どもは、企業の中に入り込み、企業に寄り添い、計画を立案実行し定着・継続的な改善まで支援させて頂き、経営指標を改善することがゴールですので、最後まで伴走させていただきます。 最後までお読みいただきありがとうございました。   ■関連するセミナーのご案内 「補助金を活用したDX化工場の新設・増設!」製造業社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/103485 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/08/25 (金) 13:00~15:00 2023/08/30 (水) 13:00~15:00 2023/09/04 (月) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/103485   ■関連するセミナーのご案内 都内補助金最大1億円で工場をDX!製造業社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/103684 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/20 (水) 13:00~15:00 2023/09/27 (水) 13:00~15:00 2023/09/28 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/103684 いつも当コラムをご愛読いただきありがとうございます。 1.製造業をさらなる成功に導くための補助金活用 本コラムでは、御社の製造業をさらなる成功に導くために、補助金を活用すべき理由について説明させていただきます。新たな設備購入(増設、更新)、人財の確保(増員、賃上げ、プロ人財)、自社の技術革新(長所進展)を追求することは、企業にとって大きな財務的負担を伴います。しかし、返済不要な公的補助金で一部分でも賄うことはこれらの負担を軽減し、事業を新たな段階へと進展させる強力な手段となるのです。 以下で具体的に補助金を活用することで実現来る可能性があることについて説明します。是非、ご一読いただき、補助金を活用して発展した自社を想像し、具体的に検討するきっかけにしていただきたいです。 2.補助金活用をおすすめする理由 (1)技術開発と革新の推進 製造業は、技術の進歩に伴って変革を余儀なくされています。AI活用、IoT、ロボット化・自動化といった最先端の技術は、競争力を高めるため、維持するための必須項目です。しかしこれらの導入は高額なコストを必要とします。ここで補助金が役立ちます。これらを活用することで、新たな研究開発、技術、またはプロセスの開発を促進することができ、製品の品質を改善し、効率を向上させ、競争力を強化することが可能となるのです。 (2)資本投資を活性化 製造業にとって、新しい設備や機器の導入、あるいは新たな工場施設の設立は、生産能力を拡大し、生産効率を向上させ、長期的にはコストを削減する絶好の機会となります。しかし、これらには大きな初期投資が必要です。補助金はこれらの財政負担を軽減し、計画を現実のものにするための資金源となるのです。もちろん、補助金は補助事業が完了したのちに、資金を受け取ることが出来るので、それまでの間は自己資本、または金融機関から融資を受ける必要があります。しかし、補助金を受けるレベルの事業計画をもっている企業であれば、金融機関側でも融資をしたいはすです。 (3)地域雇用の創出 補助金を利用することで、新たな雇用機会を創出し、地域経済を強化することも可能です。地方自治体や政府はしばしば、地元の雇用を増やすために製造業に補助金を提供します。これにより、新たな人財を確保し、会社の成長を後押しすることができます。 (4)ビジネスリスクの軽減 新製品の開発や新市場への進出は、必ずしも成功するとは限らず、リスクが伴います。補助金はそのリスクを軽減し、企業が新しい機会を追求するのを助けます。補助金により、大胆な試みを支援し、失敗した場合の影響を緩和することができます。 しかし、補助金の申請プロセスや要件は複雑であり、しっかりと内容を理解し、適切な計画を立て、事業計画書を作成する必要があります。補助金を活用するためには、まず補助金の存在を知り、その要件を理解し、申請手続きを進めることが必要です。そして、適用可能な補助金を見つけるためには、自治体や業界団体、専門家とのコミュニケーションが重要となります。 補助金は、新たな事業展開や成長の機会を追求するための強力な道具となります。しかし、その活用は計画と準備を必要とします。補助金をうまく活用し、ビジネスを次のレベルへと進めるために、今すぐその準備を始めましょう。 3.まとめ 今回のコラムでは、製造業が補助金を活用する理由について、具体的に説明をさせていただきました。今回の紹介した内容を参考に、自社の成長戦略・事業計画のなかで、補助金を活用することも視野に入れていただければ幸いです。 上記内容について、より具体的に詳細をお知りになりたい場合、補助金紹介や補助金申請に必要な事業計画の立案、補助事業の計画立案・実行支援・アドバイスが必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 私どもは、企業の中に入り込み、企業に寄り添い、計画を立案実行し定着・継続的な改善まで支援させて頂き、経営指標を改善することがゴールですので、最後まで伴走させていただきます。 最後までお読みいただきありがとうございました。   ■関連するセミナーのご案内 「補助金を活用したDX化工場の新設・増設!」製造業社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/103485 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/08/25 (金) 13:00~15:00 2023/08/30 (水) 13:00~15:00 2023/09/04 (月) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/103485   ■関連するセミナーのご案内 都内補助金最大1億円で工場をDX!製造業社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/103684 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/20 (水) 13:00~15:00 2023/09/27 (水) 13:00~15:00 2023/09/28 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/103684

製造業の原価改善3ステップとは?原価低減の方法を紹介!

2023.07.28

原価管理は、適切に利益を上げていくために不可欠な要素の一つです。 近年では、さまざまな原価管理の手法・ツールがありますが、原価管理を行う際には、自社に適した手法や・ツールを選ぶことが重要です。 本記事では、原価管理の最適化“に関する基本的な考え方と、原価改善の 3 ステップを解説します。 1.「原価管理の最適化」に関する基本的な考え方 以下①~⑥は、「原価管理の最適化」に関する基本的な考え方です。 ①現状、製品ごとに「市場価格」がある程度決まっており、原材料費高騰分の補うための価格転嫁も難しいため、製品の売価設定については、現場の要望が反映されにくい(売価を上げにくい)状況にある。 ②そのため、利益確保のために自社でコントロールできるのは「原価低減」に関するアプローチ。 ③「市場価格(売上)」は自社の力だけではコントロールできないが、「原価低減」なら自社の中でコントロール可能である。 ④利益を生み出すための「原価低減」に不可欠なデータとして、製品別の原価が必要。 ⑤製品別の原価が現状どうなっているかを知らなければ、目の前の仕事と原価の繋がりが見えてこないため、現場改善のしようがない。 ⑥製品別の原価が常にオープンになっている状態を作ることで、初めて目の前の仕事と原価の繋がりが見えてくる。 上記①~⑥の考え方をもとに、今回は「原価管理の最適化」のうち、「加工原価の改善」に向けた実際の取り組みのステップをご紹介いたします。 大きくは以下3つのステップに分かれます。 2.「データをもとにした原価改善」の3ステップとは? Step1)製品別×工程別工数データの“正確な”把握 上図は加工原価把握のためのフォーマット例です。 ・縦軸に自社の製品名 ・横軸に製品別の工程名(各工程名に段取り工数・加工工数・工賃が紐づく) を並べています。 ここでのポイントは、各製品の工数について、「段取り時間」と「加工時間」を一纏めにして記録するのではなく、「段取り時間」と「加工時間」をそれぞれ分けて記録することです。 「段取り時間」と「加工時間」を一纏めにして記録してしまうと、後々の加工原価改善に向けた現場改善を実施するにあたって、「段取り工程」と「加工工程」のどちらに問題があるのかを正確に追及することが難しくなり、結果として加工原価の改善が進みません。 一方、「段取り時間」と「加工時間」をそれぞれ分けて記録することで、「段取り工程」と「加工工程」のどちらに問題があるのかを明確に分析することが可能となるため、結果として改善対象となる工程を具体的に突き止めることができます。 ところで、多くの中堅・中小製造業の企業様では、実行加工原価(実際の加工原価)を厳密には把握しきれていません。 「段取り時間」と「加工時間」をそれぞれ正確に分けて記録することが加工原価の改善に向けた最大のポイントですが、多くの中堅・中小製造業の企業様は、「段取り時間」と「加工時間」をそれぞれ正確に分けて記録することを手間に感じる製造現場側からの強い反発がネックとなり、このStep1でつまずきます。 「段取り時間」と「加工時間」をそれぞれ分けて記録することが、巡り巡って加工原価の改善と利益の確保へと繋がり、ひいては工場経営全体にインパクトを与える取り組みであることをいかに製造現場側に理解してもらうか。 この点、Step1をクリアするための最大のポイントとなります。 Step2)製品別の原価・利益データのリストアップ 上図は製品別の原価・利益データのリストアップ例です。 前述のStep1で記録した製品別の加工原価データや製品別の売価データ等を整理した上で、各製品を利益の高い順に並べた後に、 ・上側にベスト10 ・下側にワースト10 をピックアップしています。 このようにリスト化を進めていくことで、「なんとなく儲かっている」「なんとなく儲かっていない」といった“勘や経験”に依存することなく、実際のデータに基づいて次の現場改善策を打ち出すことが可能となります。 現場の実態に即したデータを活用することで、経営層・現場の工場長・現場作業者の間で共通の改善基準を持つことができます。 「もっと頑張れ」と精神論で改善活動を指示しても現場作業者はなかなか思うように動いてくれませんが、データをもとにした共通の改善基準が見えてくることで、現場作業者も納得感を持ってより精度の高い改善活動を行うことができます。 Step3)加工原価の改善に向けた対策の実行 前述のStep2で「製品別利益ベスト10&ワースト10」を把握することで、優先的にテコ入れが必要な製品が明らかになります。 テコ入れ対象の製品を絞り込んだ後に、 「その製品のどの工程がネックになっているか」 「段取りのしかたに問題があるのか」 「加工工程に問題があるのか」 「担当するヒトのスキルに問題があるのか」 等の観点から、データをもとに過去の現場の状況の振り返りを進めていくことで、その後の加工原価改善に向けて何から手を付けていけばよいかが整理されていきます。 このように、まずは“現場の事実・データ”をもとに現状を正しく把握し、分析を進めていくことで、より精度高くポイントを絞り込みながら改善活動を行うことが可能となります。 敢えて別な表現をするならば、「勘や経験に頼った経営」から「データをもとにした経営」へと会社の体質を変えていくことこそが、「工場の原価改善」の本質であると言っても過言ではないでしょう。 以上、「データをもとにした原価改善」の3ステップとは? というテーマでお伝えさせていただきました。   【原価管理改善で収益UP】原価管理の方法と成功事例紹介レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 個別原価を「見える化」で現場からの原価改善!! 最新事例解説レポート! 従業員30名金属加工業の原価改善事例!! 工程毎の作業時間を可視化する事で現場からの原価改善が促進 生産管理、原価管理システムを導入 手書き日報からリアルタイム日報に運用を改善 https://www.funaisoken.co.jp/dl-contents/smart-factory__00950   ■関連するセミナーのご案内 「多品種少量生産機械加工業の為の原価改善!」 社長セミナー 生産管理&原価管理を徹底見直し!原価率削減!粗利改善!儲け改善! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/103833 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/10/04 (水) 13:00~15:00 2023/10/06 (金) 13:00~15:00 2023/10/11 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/103833 いつも当コラムをご愛読いただきありがとうございます。 原価管理は、適切に利益を上げていくために不可欠な要素の一つです。 近年では、さまざまな原価管理の手法・ツールがありますが、原価管理を行う際には、自社に適した手法や・ツールを選ぶことが重要です。 本記事では、原価管理の最適化“に関する基本的な考え方と、原価改善の 3 ステップを解説します。 1.「原価管理の最適化」に関する基本的な考え方 以下①~⑥は、「原価管理の最適化」に関する基本的な考え方です。 ①現状、製品ごとに「市場価格」がある程度決まっており、原材料費高騰分の補うための価格転嫁も難しいため、製品の売価設定については、現場の要望が反映されにくい(売価を上げにくい)状況にある。 ②そのため、利益確保のために自社でコントロールできるのは「原価低減」に関するアプローチ。 ③「市場価格(売上)」は自社の力だけではコントロールできないが、「原価低減」なら自社の中でコントロール可能である。 ④利益を生み出すための「原価低減」に不可欠なデータとして、製品別の原価が必要。 ⑤製品別の原価が現状どうなっているかを知らなければ、目の前の仕事と原価の繋がりが見えてこないため、現場改善のしようがない。 ⑥製品別の原価が常にオープンになっている状態を作ることで、初めて目の前の仕事と原価の繋がりが見えてくる。 上記①~⑥の考え方をもとに、今回は「原価管理の最適化」のうち、「加工原価の改善」に向けた実際の取り組みのステップをご紹介いたします。 大きくは以下3つのステップに分かれます。 2.「データをもとにした原価改善」の3ステップとは? Step1)製品別×工程別工数データの“正確な”把握 上図は加工原価把握のためのフォーマット例です。 ・縦軸に自社の製品名 ・横軸に製品別の工程名(各工程名に段取り工数・加工工数・工賃が紐づく) を並べています。 ここでのポイントは、各製品の工数について、「段取り時間」と「加工時間」を一纏めにして記録するのではなく、「段取り時間」と「加工時間」をそれぞれ分けて記録することです。 「段取り時間」と「加工時間」を一纏めにして記録してしまうと、後々の加工原価改善に向けた現場改善を実施するにあたって、「段取り工程」と「加工工程」のどちらに問題があるのかを正確に追及することが難しくなり、結果として加工原価の改善が進みません。 一方、「段取り時間」と「加工時間」をそれぞれ分けて記録することで、「段取り工程」と「加工工程」のどちらに問題があるのかを明確に分析することが可能となるため、結果として改善対象となる工程を具体的に突き止めることができます。 ところで、多くの中堅・中小製造業の企業様では、実行加工原価(実際の加工原価)を厳密には把握しきれていません。 「段取り時間」と「加工時間」をそれぞれ正確に分けて記録することが加工原価の改善に向けた最大のポイントですが、多くの中堅・中小製造業の企業様は、「段取り時間」と「加工時間」をそれぞれ正確に分けて記録することを手間に感じる製造現場側からの強い反発がネックとなり、このStep1でつまずきます。 「段取り時間」と「加工時間」をそれぞれ分けて記録することが、巡り巡って加工原価の改善と利益の確保へと繋がり、ひいては工場経営全体にインパクトを与える取り組みであることをいかに製造現場側に理解してもらうか。 この点、Step1をクリアするための最大のポイントとなります。 Step2)製品別の原価・利益データのリストアップ 上図は製品別の原価・利益データのリストアップ例です。 前述のStep1で記録した製品別の加工原価データや製品別の売価データ等を整理した上で、各製品を利益の高い順に並べた後に、 ・上側にベスト10 ・下側にワースト10 をピックアップしています。 このようにリスト化を進めていくことで、「なんとなく儲かっている」「なんとなく儲かっていない」といった“勘や経験”に依存することなく、実際のデータに基づいて次の現場改善策を打ち出すことが可能となります。 現場の実態に即したデータを活用することで、経営層・現場の工場長・現場作業者の間で共通の改善基準を持つことができます。 「もっと頑張れ」と精神論で改善活動を指示しても現場作業者はなかなか思うように動いてくれませんが、データをもとにした共通の改善基準が見えてくることで、現場作業者も納得感を持ってより精度の高い改善活動を行うことができます。 Step3)加工原価の改善に向けた対策の実行 前述のStep2で「製品別利益ベスト10&ワースト10」を把握することで、優先的にテコ入れが必要な製品が明らかになります。 テコ入れ対象の製品を絞り込んだ後に、 「その製品のどの工程がネックになっているか」 「段取りのしかたに問題があるのか」 「加工工程に問題があるのか」 「担当するヒトのスキルに問題があるのか」 等の観点から、データをもとに過去の現場の状況の振り返りを進めていくことで、その後の加工原価改善に向けて何から手を付けていけばよいかが整理されていきます。 このように、まずは“現場の事実・データ”をもとに現状を正しく把握し、分析を進めていくことで、より精度高くポイントを絞り込みながら改善活動を行うことが可能となります。 敢えて別な表現をするならば、「勘や経験に頼った経営」から「データをもとにした経営」へと会社の体質を変えていくことこそが、「工場の原価改善」の本質であると言っても過言ではないでしょう。 以上、「データをもとにした原価改善」の3ステップとは? というテーマでお伝えさせていただきました。   【原価管理改善で収益UP】原価管理の方法と成功事例紹介レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ 個別原価を「見える化」で現場からの原価改善!! 最新事例解説レポート! 従業員30名金属加工業の原価改善事例!! 工程毎の作業時間を可視化する事で現場からの原価改善が促進 生産管理、原価管理システムを導入 手書き日報からリアルタイム日報に運用を改善 https://www.funaisoken.co.jp/dl-contents/smart-factory__00950   ■関連するセミナーのご案内 「多品種少量生産機械加工業の為の原価改善!」 社長セミナー 生産管理&原価管理を徹底見直し!原価率削減!粗利改善!儲け改善! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/103833 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/10/04 (水) 13:00~15:00 2023/10/06 (金) 13:00~15:00 2023/10/11 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/103833