DX CONSULTING COLUMN 工場DXコンサルティングコラム

専門コンサルタントが執筆するAI・ロボットコラム
最新のAI・ロボット技術に精通したコンサルタントによる定期コラム

旋盤、マシニングセンターユーザー必見!ロボット導入で生産性を3倍にする方法!

2021.12.20

1.生産性を3倍にする思考法 ずばり今回は夜間生産を実施しましょう!という話です。 夜間操業になると、1直体制の加工機1台が2直体制になり、生産性は単純に2倍になります。3直分カバーできると、生産性3倍です。つまり、今回は「夜間操業、無人での連続稼働を行えるようにしましょう!」という話です。 ここからはどういった考えで投資をするか?というお話をします。まず、夜間生産を行えるようになると、見直されるポイントを書きます。 夜間生産により、生産に余剰が生まれる →各加工機に生産余剰が生まれる 昼間生産で新規受注余力が生まれる →売り上げのUP 下記はイメージ図です。 単純な図式ですが、 「夜間生産を1台の加工機だけでもすると、新規受注の余力が生まれる!」という事を言いたいです。 「じゃあ、夜間生産をするけどどうした良いの?」というご質問にお答えしていきます。 2.自社の加工製品を確認する ここは、どのようなロボットシステムを入れるか?という事を考える投資を考える段階です。 多品種少量生産を行われる会社様は多いと思います。その中で自動化をどう進めたらよいか? 答えは「準量産品の見極め」と「ワーク形状の見極め」です。 自動化をしたいとき、量産品は直ぐに思いつきます。準量産品と言われるとぴんと来ない方も多い方と思います。自社の生産するワークの中で、量産品の次に多いワークはないか?その調査をしましょう。 一品一様のワークまで対象にすると中々自動化が出来ません。というより、費用対効果が出なくなりますし、なかなか構想が進まなくてとん挫することになる可能性が高いです。 もう一つの「ワーク形状の見極め」です。加工する際に、一気に削って作成することは少なく、2~3回と分けて加工することも多いと思います。その第1段階である素材からの時のみをロボット化するという物です。その素材の形状がなるだけ似ている事が前提となりますが、こうすることで、ロボットのハンド作成コストを下げることができます。自社の加工の強みを再確認することになり、受注のパターンの画一化や見積もりの早期化にもつながります。一品一様の中にも自社の特徴、強みは顕著に表れている傾向があります。つまり、「この時点で新規受注の道筋を立てよう!」という事です。 3.ロボットへのワーク供給を考える 夜間操業の為の供給の付帯設備がいろいろあります。ストッカーやフィーダー等あります。ですが「ありものの供給機は自社のワークに合わない」とお考えの方も多いと思います。私は前の項目でも述べたように、「加工段階を色々と考えると、供給用設備にも合わせるようになるのでは?」と考えます。 この記事を読んでいただく方の多くは自社で加工をしていると思います。その際、ワークをセットする冶具を多く作られると思います。何が言いたいかというと、「ワークを最も知る自分たちだからこそ、ワークにあった供給冶具を作れるのでは?」という事です。基本的な供給機は、ロボットSIerに作成してもらい、供給冶具は自社で工夫する。それを考えるべきだと私は考えます。 解決方法の提供というより、考え方の押し売り的な面が強いですが、ロボット活用の際にはぜひご考慮いただきたいポイントです。 また、供給で一番楽なのはNC旋盤を対象とする場合です。円形ワークが多いのでV溝を作ればストック可能だからです。 4.加工法の改良 実際に入れたロボットをどう活用するか?生産性UPを考える段階です。 ロボットは人と違い疲れる事はや集中力が切れることはありません。ただ、決められたことしかできません。では、長時間ロボットを動かすためにどうすればよいか? それは、今まで人手前提で作っていた加工方法を見直すことが必要です。見直す対象はいかが考えられます。 加工条件(プログラム)の導き出し 切削液、潤滑油 ツールの交換の条件、 キリコの処理 ロボットの導入において、ロボットがクローズアップされがちですが、「長時間稼働させたい」「職人芸を自動化させたい」となると、自社の加工方法の見直しが必須になります。上3つの条件はロボット担当だけでなく、加工担当も巻き込み解決していく必要があり、長期にわたるかもしれません。ですが必ず効果が出ます! ただ、キリコの処理に関しては投資が必要なケースが多いです。人手前提で買った加工機にはキリコを排除する機工がついていないケースがあります。その場合、投資をするか、ロボットで何とかするか、しっかり考えないといけません。加工時のキリコの飛沫に関しても、エアーで飛ばすなど、しっかり対策しておかないとワークに傷を付けることになります。自社の加工機を色々と知っている分、自動化する際にロボットSIerにキリコ対策をどうするか?しっかりと話し合って自動化をしましょう!   今回は生産性を3倍にする方法=夜間操業に関してお話ししました。ご参考にしていただけると幸いです。   ■最短半年でロボット導入を成功させる方法 従業員10名以下、未経験でも、半年でロボット導入を成功させる方法を解説! ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_00145 ■工場AI・ロボット.comでは「無料オンライン診断サービス」を行っております 専門コンサルタントが無料でロボット活用について診断致します! 無料お申し込みはこちら https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html 1.生産性を3倍にする思考法 ずばり今回は夜間生産を実施しましょう!という話です。 夜間操業になると、1直体制の加工機1台が2直体制になり、生産性は単純に2倍になります。3直分カバーできると、生産性3倍です。つまり、今回は「夜間操業、無人での連続稼働を行えるようにしましょう!」という話です。 ここからはどういった考えで投資をするか?というお話をします。まず、夜間生産を行えるようになると、見直されるポイントを書きます。 夜間生産により、生産に余剰が生まれる →各加工機に生産余剰が生まれる 昼間生産で新規受注余力が生まれる →売り上げのUP 下記はイメージ図です。 単純な図式ですが、 「夜間生産を1台の加工機だけでもすると、新規受注の余力が生まれる!」という事を言いたいです。 「じゃあ、夜間生産をするけどどうした良いの?」というご質問にお答えしていきます。 2.自社の加工製品を確認する ここは、どのようなロボットシステムを入れるか?という事を考える投資を考える段階です。 多品種少量生産を行われる会社様は多いと思います。その中で自動化をどう進めたらよいか? 答えは「準量産品の見極め」と「ワーク形状の見極め」です。 自動化をしたいとき、量産品は直ぐに思いつきます。準量産品と言われるとぴんと来ない方も多い方と思います。自社の生産するワークの中で、量産品の次に多いワークはないか?その調査をしましょう。 一品一様のワークまで対象にすると中々自動化が出来ません。というより、費用対効果が出なくなりますし、なかなか構想が進まなくてとん挫することになる可能性が高いです。 もう一つの「ワーク形状の見極め」です。加工する際に、一気に削って作成することは少なく、2~3回と分けて加工することも多いと思います。その第1段階である素材からの時のみをロボット化するという物です。その素材の形状がなるだけ似ている事が前提となりますが、こうすることで、ロボットのハンド作成コストを下げることができます。自社の加工の強みを再確認することになり、受注のパターンの画一化や見積もりの早期化にもつながります。一品一様の中にも自社の特徴、強みは顕著に表れている傾向があります。つまり、「この時点で新規受注の道筋を立てよう!」という事です。 3.ロボットへのワーク供給を考える 夜間操業の為の供給の付帯設備がいろいろあります。ストッカーやフィーダー等あります。ですが「ありものの供給機は自社のワークに合わない」とお考えの方も多いと思います。私は前の項目でも述べたように、「加工段階を色々と考えると、供給用設備にも合わせるようになるのでは?」と考えます。 この記事を読んでいただく方の多くは自社で加工をしていると思います。その際、ワークをセットする冶具を多く作られると思います。何が言いたいかというと、「ワークを最も知る自分たちだからこそ、ワークにあった供給冶具を作れるのでは?」という事です。基本的な供給機は、ロボットSIerに作成してもらい、供給冶具は自社で工夫する。それを考えるべきだと私は考えます。 解決方法の提供というより、考え方の押し売り的な面が強いですが、ロボット活用の際にはぜひご考慮いただきたいポイントです。 また、供給で一番楽なのはNC旋盤を対象とする場合です。円形ワークが多いのでV溝を作ればストック可能だからです。 4.加工法の改良 実際に入れたロボットをどう活用するか?生産性UPを考える段階です。 ロボットは人と違い疲れる事はや集中力が切れることはありません。ただ、決められたことしかできません。では、長時間ロボットを動かすためにどうすればよいか? それは、今まで人手前提で作っていた加工方法を見直すことが必要です。見直す対象はいかが考えられます。 加工条件(プログラム)の導き出し 切削液、潤滑油 ツールの交換の条件、 キリコの処理 ロボットの導入において、ロボットがクローズアップされがちですが、「長時間稼働させたい」「職人芸を自動化させたい」となると、自社の加工方法の見直しが必須になります。上3つの条件はロボット担当だけでなく、加工担当も巻き込み解決していく必要があり、長期にわたるかもしれません。ですが必ず効果が出ます! ただ、キリコの処理に関しては投資が必要なケースが多いです。人手前提で買った加工機にはキリコを排除する機工がついていないケースがあります。その場合、投資をするか、ロボットで何とかするか、しっかり考えないといけません。加工時のキリコの飛沫に関しても、エアーで飛ばすなど、しっかり対策しておかないとワークに傷を付けることになります。自社の加工機を色々と知っている分、自動化する際にロボットSIerにキリコ対策をどうするか?しっかりと話し合って自動化をしましょう!   今回は生産性を3倍にする方法=夜間操業に関してお話ししました。ご参考にしていただけると幸いです。   ■最短半年でロボット導入を成功させる方法 従業員10名以下、未経験でも、半年でロボット導入を成功させる方法を解説! ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_00145 ■工場AI・ロボット.comでは「無料オンライン診断サービス」を行っております 専門コンサルタントが無料でロボット活用について診断致します! 無料お申し込みはこちら https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html

中小企業 製造業がデジタル化・DXに取り組む必要性と推進に必要なマインド

2021.12.13

1.はじめに 本コラムでは、中小企業・零細企業の製造業企業が、昨今のデジタル化・DX化に対応する必要性とデジタル化・DX推進に必要なマインドについて説明をします。 現在押し寄せてきているデジタル化・DXの波の大きさは、過去のIT化の波と比べてもとても大きいものです。これまで、何とか波を乗り越えてきた企業にとってもこの波はやり過ごすことは難易度が高い状況です。それはなぜでしょうか? その理由は2つあります。 1つ目は、今回のデジタル化・DXの大きな流れの背景にある社会的な原因。 2つ目は、デジタル化が一般生活の至る所に入り込み、現在の私たちの暮らしを土台から支えており、使えないとトラブルになる程、必要不可欠なツールになったためです。 上記の理由について詳細は後述するとして、今回の波に応じず、デジタル化・DXに取り組まずにそのままにすると、生産自体は続けられたとしても、最悪の場合、関係会社とのITレベル・リテラシーレベルに乖離が発生し、関係を継続出来なくなる可能性があります。 以下の章で、上記の詳細とデジタル化・DX推進に必要なマインドについて説明をします。 2.2つの理由 はじめに挙げた2つの理由について説明をします。 まず、1つ目の理由「今回のデジタル化・DXの大きな流れの背景にある社会的な原因」の中で、代表的な原因を下記します。 少子化による国内労働力の奪い合い SGDsによる環境資源保護取り組みを評価する高まり ブラック企業問題の是正 労働生産性の向上取り組み 以上のような、従来であれば意識していなかった事象が当たり前になってきており、それに対応するには、今までの当たり前から脱却する必要があります。人手に頼った対策では限界があり、それ以外の力・ツールを使用する必要があります。 次に2つ目の理由「デジタル化が一般生活の至る所に入り込み、現在の私たちの暮らしを土台から支えており、使えないと不便を感じる程、必要不可欠なツールになった」についてです。 デジタルネイティブ・Z世代と呼ばれる世代が誕生している事からも、デジタル技術は、私たちの生活の一部になっています。そのため、デジタル技術の活用前提で、物事を改善する必要があります。もちろん、従来の知恵・工夫で改善することは今後も必要ですが、デジタル技術・デジタルツールを使用することを同じレベルで最初から考えることが当たり前になってきています。 このように、今までの「数十年の間、当たり前に持っていた考え・価値観」が今後は、その前提から変わることから、当たり前ではなくなることが予想されます。 3.これからの当たり前 仕事で例えますと、今まで書面上で確認していた指示書や注文書等が、ペーパーレス化技術により、ディスプレイ上に表示されて、印刷は一切されないことが主流になります。紙に印刷して保管することが、最も安心とされていたことが、データ化して、クラウドに保存したほうが、偽造・紛失のリスクを無くせるからより安心と考える時代になってくるのです。そうなると、書類の郵送やFAXは、相対的に信頼性が低下し、使われなくなっていき、電子帳票やEDIが主流になります。そうすると、FAXしか使えない会社との取引は中止するといったことも考えられます。 若干飛躍した話になりますが、デジタル化が進むと、利便性を高めるため、色々なところで標準化・規格化が行われて行きます。そうすると、デジタル化を進めている企業間で情報のやり取りが共通化される一方、デジタル化に対応をしない企業は少数派になり、不便な企業とみなされ、淘汰されていくかもしれません。また、これからの若年層はデジタル化に取り組んでいない企業には応募しないといった情報があります。そうすると、人材の確保にも苦戦することになり、いくら良い製品を作っていたとしても、今後、生き残れない可能性が高まります。 4.デジタル化・DXに必要なマインド では、自社でデジタル化・DXを推進するにはどうしたらよいでしょうか? この点については、以下の必須ポイントがあります。 経営者自身がデジタル化・DXを自社がメインで推進することを決心する 将来の目的・目標を明確にする デジタルシステムは、目的・目標を達成するためのツールであり、導入がゴールではないことを認識する ベンダー等の協力会社に任せっきりしない 情報収集や相談に、ITコンサルタントやシステムベンダーを積極的に活用することはよいことですが、彼らが自社の業務を改善し、目的・目標を達成してくれるわけではありません。彼らと協力しながら、自社がメインとなって推進し、目的・目標を達成する覚悟が必要なマインドです。 5.まとめ 今回のコラムでは、製造業を生業とする、中小企業・零細企業がデジタル化・DXに取り組む必要性とその推進、達成に必要なマインドについて説明をさせていただきました。現在のデジタル化・Dの勢いは凄まじく、時流と呼べるほどの流れです。今回のデジタル化・DXに必要なマインドを覚えていただき、自社の業務改善、成長発展のお役に立てていただけたら、幸いです。 最後までお読みいただきありがとうございました。   ■従業員数30~300名規模のメーカー経営者様向け“営業&設計部門の生産性向上” 最新事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory__00262 ■工場AI・ロボット.comでは「無料オンライン診断サービス」を行っております 専門コンサルタントが無料でDX活用について診断致します! 無料お申し込みはこちら https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html 1.はじめに 本コラムでは、中小企業・零細企業の製造業企業が、昨今のデジタル化・DX化に対応する必要性とデジタル化・DX推進に必要なマインドについて説明をします。 現在押し寄せてきているデジタル化・DXの波の大きさは、過去のIT化の波と比べてもとても大きいものです。これまで、何とか波を乗り越えてきた企業にとってもこの波はやり過ごすことは難易度が高い状況です。それはなぜでしょうか? その理由は2つあります。 1つ目は、今回のデジタル化・DXの大きな流れの背景にある社会的な原因。 2つ目は、デジタル化が一般生活の至る所に入り込み、現在の私たちの暮らしを土台から支えており、使えないとトラブルになる程、必要不可欠なツールになったためです。 上記の理由について詳細は後述するとして、今回の波に応じず、デジタル化・DXに取り組まずにそのままにすると、生産自体は続けられたとしても、最悪の場合、関係会社とのITレベル・リテラシーレベルに乖離が発生し、関係を継続出来なくなる可能性があります。 以下の章で、上記の詳細とデジタル化・DX推進に必要なマインドについて説明をします。 2.2つの理由 はじめに挙げた2つの理由について説明をします。 まず、1つ目の理由「今回のデジタル化・DXの大きな流れの背景にある社会的な原因」の中で、代表的な原因を下記します。 少子化による国内労働力の奪い合い SGDsによる環境資源保護取り組みを評価する高まり ブラック企業問題の是正 労働生産性の向上取り組み 以上のような、従来であれば意識していなかった事象が当たり前になってきており、それに対応するには、今までの当たり前から脱却する必要があります。人手に頼った対策では限界があり、それ以外の力・ツールを使用する必要があります。 次に2つ目の理由「デジタル化が一般生活の至る所に入り込み、現在の私たちの暮らしを土台から支えており、使えないと不便を感じる程、必要不可欠なツールになった」についてです。 デジタルネイティブ・Z世代と呼ばれる世代が誕生している事からも、デジタル技術は、私たちの生活の一部になっています。そのため、デジタル技術の活用前提で、物事を改善する必要があります。もちろん、従来の知恵・工夫で改善することは今後も必要ですが、デジタル技術・デジタルツールを使用することを同じレベルで最初から考えることが当たり前になってきています。 このように、今までの「数十年の間、当たり前に持っていた考え・価値観」が今後は、その前提から変わることから、当たり前ではなくなることが予想されます。 3.これからの当たり前 仕事で例えますと、今まで書面上で確認していた指示書や注文書等が、ペーパーレス化技術により、ディスプレイ上に表示されて、印刷は一切されないことが主流になります。紙に印刷して保管することが、最も安心とされていたことが、データ化して、クラウドに保存したほうが、偽造・紛失のリスクを無くせるからより安心と考える時代になってくるのです。そうなると、書類の郵送やFAXは、相対的に信頼性が低下し、使われなくなっていき、電子帳票やEDIが主流になります。そうすると、FAXしか使えない会社との取引は中止するといったことも考えられます。 若干飛躍した話になりますが、デジタル化が進むと、利便性を高めるため、色々なところで標準化・規格化が行われて行きます。そうすると、デジタル化を進めている企業間で情報のやり取りが共通化される一方、デジタル化に対応をしない企業は少数派になり、不便な企業とみなされ、淘汰されていくかもしれません。また、これからの若年層はデジタル化に取り組んでいない企業には応募しないといった情報があります。そうすると、人材の確保にも苦戦することになり、いくら良い製品を作っていたとしても、今後、生き残れない可能性が高まります。 4.デジタル化・DXに必要なマインド では、自社でデジタル化・DXを推進するにはどうしたらよいでしょうか? この点については、以下の必須ポイントがあります。 経営者自身がデジタル化・DXを自社がメインで推進することを決心する 将来の目的・目標を明確にする デジタルシステムは、目的・目標を達成するためのツールであり、導入がゴールではないことを認識する ベンダー等の協力会社に任せっきりしない 情報収集や相談に、ITコンサルタントやシステムベンダーを積極的に活用することはよいことですが、彼らが自社の業務を改善し、目的・目標を達成してくれるわけではありません。彼らと協力しながら、自社がメインとなって推進し、目的・目標を達成する覚悟が必要なマインドです。 5.まとめ 今回のコラムでは、製造業を生業とする、中小企業・零細企業がデジタル化・DXに取り組む必要性とその推進、達成に必要なマインドについて説明をさせていただきました。現在のデジタル化・Dの勢いは凄まじく、時流と呼べるほどの流れです。今回のデジタル化・DXに必要なマインドを覚えていただき、自社の業務改善、成長発展のお役に立てていただけたら、幸いです。 最後までお読みいただきありがとうございました。   ■従業員数30~300名規模のメーカー経営者様向け“営業&設計部門の生産性向上” 最新事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory__00262 ■工場AI・ロボット.comでは「無料オンライン診断サービス」を行っております 専門コンサルタントが無料でDX活用について診断致します! 無料お申し込みはこちら https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html

従業員10名でロボット10台を導入した中小製造業のロボット導入成功事例!!

2021.12.06

今回のコラムでは、中小製造業のビックリ成功事例をお伝えいたします。 それは、社員数わずか10名で”10台のロボットが活躍している”製造業A社です。 通常、世間一般の常識では、製造業で社員数10名というのは完全な中小零細な町工場と思われています。 そして、そのような零細な製造現場では50~60歳代のベテランの職人達が熟練の技を駆使して長年の経験と勘でモノ作りをしているイメージがあるでしょう。 そこには、練りに練り上げられた匠の技により、まさに「アナログ感」満載のイメージがあり、ロボットとは程遠い世界と思われる方が大半です。 しかしA社はそのイメージとは全くかけ離れています。 A社で働いているのは20~30代の若手も多く、現場社員全員がロボットの操作が出来ます。 「デジタルネイティブ世代」で、当たり前のようにデジタルに接して活用している世代です。 3DのCADからロボット入力用データを作り、ロボットプログラミング、ロボット制御、ロボットオペレーション、さらには、ロボットプログラムメンテナンスまで、10名全員がロボット操作をします。 また、工場内のレイアウトも独特です。 通常、熟練の匠の現場では、熟練者(人間)が動きやすいようにレイアウトが決まります。 それとは全く逆の発想で、ロボットが動きやすい(活躍しやすい)ようにロボットありきのレイアウトになっていて、その周りに人間が付いているという感じです。 ところで、ロボットに何をさせているかというと、実は、高精度&高品質な加工です。 通常、ロボット活用と言うと、誰でも出来るような簡単で単純作業をただひたすら何時間も繰り返し動かすというイメージがあるかもしれません。 しかしA社では、職人でも出来ないような加工方法をデータ解析してデジタルプログラムで作り、それをロボットに覚え込ませて動かしていきます。 アナログな職人技術ではなく、高度で“デジタルな制御技術”なのです。 その結果、A社のロボットにしかできない技術があり、それが差別化となって競合他社に勝っているようです。 ロボットだから安く作れるというよりも、ロボットだから高品質のものを高利益で作れるという訳です。 むしろ熟練技術・属人技術こそロボット化です。 職人のアナログ技術だと、匠の技を習得するのに10~20年は掛かるかもしれません。 しかし、デジタルネイティブ世代にとってのデジタルプログラミング自体は1~2年で習得してしまうでしょう。 そして、デジタルプログラミングを好むヒトは喜んで働くでしょう。 ロボット活用により人材の活性化が出来るのと、実は人材の採用もしやすくなります。 船井総研ではロボットやAIの導入に役立つダウンロードコンテンツをご用意しております。 是非ご活用下さい。   ▼レポート無料ダウンロード お申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html ■最短半年でロボット導入を成功させる方法 「こうなりたい!」と思っている経営者様におすすめ 多品種少量生産だがロボットを活用したい ロボットの導入は未経験だがチャレンジしたい 技術員が不在でロボット導入に工数をかけられないが今後は従業員にもロボットを扱えるスキルを身に着けて欲しい 残業が状態化しており、作業員が不足しているため生産性を向上させたい 大きな投資に不安を抱いており、なかなか実行できないのでなるべくコストを抑えてロボットを導入したい 目次 ロボット導入が失敗する3つの理由 初めてのロボットはこれを使え!! 具体的活用事例 本レポートでは、ロボット導入が失敗する理由とその解決策、さらに、具体的な活用事例をご紹介しています。 https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html ■工場AI・ロボット.comでは「無料オンライン診断サービス」を行っております 専門コンサルタントが無料でAI活用について診断致します! 無料お申し込みはこちら https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html ロボットを導入したいが初めてでやり方が分からない・・・ 多品種少量生産の溶接ロボットを導入したい 旋盤工程のワーク供給にロボットを活用したい 人による目視検査を自動化したい 多品種少量生産の工場でも導入可能かどうかを知りたい 他社の導入事例の詳細について聞きたい ロボットやAI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html 今回のコラムでは、中小製造業のビックリ成功事例をお伝えいたします。 それは、社員数わずか10名で”10台のロボットが活躍している”製造業A社です。 通常、世間一般の常識では、製造業で社員数10名というのは完全な中小零細な町工場と思われています。 そして、そのような零細な製造現場では50~60歳代のベテランの職人達が熟練の技を駆使して長年の経験と勘でモノ作りをしているイメージがあるでしょう。 そこには、練りに練り上げられた匠の技により、まさに「アナログ感」満載のイメージがあり、ロボットとは程遠い世界と思われる方が大半です。 しかしA社はそのイメージとは全くかけ離れています。 A社で働いているのは20~30代の若手も多く、現場社員全員がロボットの操作が出来ます。 「デジタルネイティブ世代」で、当たり前のようにデジタルに接して活用している世代です。 3DのCADからロボット入力用データを作り、ロボットプログラミング、ロボット制御、ロボットオペレーション、さらには、ロボットプログラムメンテナンスまで、10名全員がロボット操作をします。 また、工場内のレイアウトも独特です。 通常、熟練の匠の現場では、熟練者(人間)が動きやすいようにレイアウトが決まります。 それとは全く逆の発想で、ロボットが動きやすい(活躍しやすい)ようにロボットありきのレイアウトになっていて、その周りに人間が付いているという感じです。 ところで、ロボットに何をさせているかというと、実は、高精度&高品質な加工です。 通常、ロボット活用と言うと、誰でも出来るような簡単で単純作業をただひたすら何時間も繰り返し動かすというイメージがあるかもしれません。 しかしA社では、職人でも出来ないような加工方法をデータ解析してデジタルプログラムで作り、それをロボットに覚え込ませて動かしていきます。 アナログな職人技術ではなく、高度で“デジタルな制御技術”なのです。 その結果、A社のロボットにしかできない技術があり、それが差別化となって競合他社に勝っているようです。 ロボットだから安く作れるというよりも、ロボットだから高品質のものを高利益で作れるという訳です。 むしろ熟練技術・属人技術こそロボット化です。 職人のアナログ技術だと、匠の技を習得するのに10~20年は掛かるかもしれません。 しかし、デジタルネイティブ世代にとってのデジタルプログラミング自体は1~2年で習得してしまうでしょう。 そして、デジタルプログラミングを好むヒトは喜んで働くでしょう。 ロボット活用により人材の活性化が出来るのと、実は人材の採用もしやすくなります。 船井総研ではロボットやAIの導入に役立つダウンロードコンテンツをご用意しております。 是非ご活用下さい。   ▼レポート無料ダウンロード お申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html ■最短半年でロボット導入を成功させる方法 「こうなりたい!」と思っている経営者様におすすめ 多品種少量生産だがロボットを活用したい ロボットの導入は未経験だがチャレンジしたい 技術員が不在でロボット導入に工数をかけられないが今後は従業員にもロボットを扱えるスキルを身に着けて欲しい 残業が状態化しており、作業員が不足しているため生産性を向上させたい 大きな投資に不安を抱いており、なかなか実行できないのでなるべくコストを抑えてロボットを導入したい 目次 ロボット導入が失敗する3つの理由 初めてのロボットはこれを使え!! 具体的活用事例 本レポートでは、ロボット導入が失敗する理由とその解決策、さらに、具体的な活用事例をご紹介しています。 https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html ■工場AI・ロボット.comでは「無料オンライン診断サービス」を行っております 専門コンサルタントが無料でAI活用について診断致します! 無料お申し込みはこちら https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html ロボットを導入したいが初めてでやり方が分からない・・・ 多品種少量生産の溶接ロボットを導入したい 旋盤工程のワーク供給にロボットを活用したい 人による目視検査を自動化したい 多品種少量生産の工場でも導入可能かどうかを知りたい 他社の導入事例の詳細について聞きたい ロボットやAI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html

多品種少量生産への溶接ロボット導入を成功させるポイント解説

2021.11.25

多品種少量生産の溶接加工を困難にさせる要因 溶接ロボットの多品種対応を実現するには解決しなければならない課題がいくつもあり、多くのロボットユーザーの方はリピート品かつ大ロットの製品でなければ採算が合わないと考えていると思います。 しかし、日本の中小製造業では多品種少量生産が当たり前であり、リピート品且つ大ロットの製品を受注しているケースの方が少ない為、溶接の自動化を検討する場合には必然的に多品種対応が求められます。 本コラムでは、出来るだけ多品種対応に失敗しない為のポイントと解決策を解説していきたいと思います。 多くの場合多品種対応に失敗する要因は下記になります。 ロボットへの教示時間 溶接品質 高頻度な段取り 多品種生産を想定していないシステム 多品種少量生産の場合、高頻度での加工寸法変更や品種追加が有り、その都度ロボットへの教示を行う事に対して工数(コスト)が合わない。 結果、手作業での対応でこなしてしまう事で、いつまでも自動化出来ないという事が失敗事例として最も多い要因です。 それではこのような課題に対してどのようにアプローチして多品種対応を成功させるべきでしょうか。 Point1:溶接ロボットへの教示時間の短縮(オフラインティーチングソフト活用) ・通常のロボット活用の流れ(新規品種・寸法変更品受注時) 受注してから溶接加工を開始する前にロボットへの教示が必要となる為に、溶接作業の完了が遅れます。 受注のロットが小さければ、ロボット教示をしている時間で手溶接をしてしまった方が早く終わるという事が起きてしまう為にロボットの活用が進みません。 ・多品種対応に向けたロボット活用の流れ(ロボットで生産する前提での準備) 図面の3D化とオフラインティーチングソフトの活用で教示を外段取り化する事で、多品種対応の為の教示時間による生産L/Tの増加を抑制します。 Point2:ロボット溶接の品質 溶接は、入熱による歪や収縮・膨張がある中でも要求寸法と強度を確保しなければならない非常に難しい加工であり職人を一人育成させるには10年必要と言われる技術 ロボット溶接と手溶接は同じやり方(電流や送り速度)では上手くいかない事も多い。 多品種対応する為には、ロボット溶接での溶接条件を数値化し、前提条件によって最適な設定を選択していく必要がある。(条件のパターン化して溶接PRG作成) 溶接中の歪などワークの変化に追従出来るセンシング機器をロボットに付加し、リアルタイムな補正を掛けられるシステムを構築する必要がある。 手溶接の職人では無く、ロボット溶接のプロフェッショナルを育てていく必要がある。 Point3:高頻度な段取り 製作物が変わる度に段取りが必要となるシステム 溶接時間より段取り時間の方が長い 段取りの調整・部品交換場所が多い 多品種小ロット生産では、一日に複数回の段取りを行う必要が有る事も多く、段取りの時間は日当たりの生産能力に直結します。 また、複雑な段取りは作業ミスや動作不良の原因となりやすく注意が必要です。 多品種対応の中でも共通化出来る機構やサーボモータ等を活用した電気制御の自動段取りなど出来るだけ段取り作業の少なくて済むシステムを構築する必要があります 段取りは最小限かつ再現性の高い機構と治具を用いつつ、可能な限り段取り時間を短縮していく Point4:多品種生産を想定していないシステム ロボットに興味があったので、メーカーから溶接ロボットとポジショナだけ購入した。 特定の製品を量産する為にロボットシステムを購入したが、受注終了して未使用 シーケンサ等の制御機器を用いず、ロボットコントローラーのみの制御 ロボットは汎用性が高い反面、明確な目的やスペックを想定し、その為に必要な機器を装備していないと、要求された成果を出す事は出来ません。 自動化対象とする品種の特長、要求品質、加工能力、加工範囲などを明確にした上で、要求を満たす能力を持ったシステムを構築し導入する必要がある。 ロボット研磨システム導入と投資対効果 ロボット研磨システムを構築しようと思うと数千万円単位での投資が必要となります。 大ロット小品種の生産体制ならば、ロボット研磨システムも構築しやすいでしょうが、多品種小ロット生産の場合は、システムを構築する際に入念にデータを分析してシステムへの要件定義をしないといけません。 どの品種にどのくらい工数が掛かっているのか? どの品種の加工が最も難しいのか? 既存の作業はどのような作業をしているのか? どのサイズ範囲のワークを自動化対象とするのか? どのくらいの人的工数を削減していきたいのか? 一連の研磨の中でどの範囲を自動化させるのか? どのようなオペレーションでシステムを動かすのか? 段取り変えはどのようにするのか? まとめ ●多品種少量生産の溶接加工を成功させるポイント オフラインティーチングソフト活用 ロボット溶接職人の育成 自動段取り機構(機構の共通化) 多品種生産を想定したシステム導入 自動化対象となるサイズや加工方法・要求品質を綿密に想定した中で簡単に段取り出来る機構や教示方法等、使い勝手面にも注意してシステムを構想していく。 平行してロボット担当者を人選し、長期的視点で育成していく。 ★成功事例紹介★ ●従業員10名の会社が10台のロボットを導入! 製品の標準化と複数ロボットの連動制御技術を実現しロボット設備のフル活用による品質の安定と生産性を大幅に向上した事例 北海道に拠点をおくとA社様は地域柄溶接職人の確保や人材の育成に非常に課題意識をもっており、十数年前から工場の自動化に取り組んでいたが、当時はなかなか上手くいかず溶接ロボットが現場で放置されるような状況にあったが、ある時一人の従業員がロボットに興味を持ち始め、溶接ロボットを活用する様になった事がきっかけで、徐々に溶接ロボット活用が加速し、従業員10名に対しロボットが10台あり、全従業員がロボットを操作する事が出来るまでとなった。 自動化を推進した結果、従来では3名でやる作業が1名で生産出来る様になり、従業員のワークライフバランスも向上、技術アピールにより受注拡大に成功している。 事例企業の社長に成功のポイントを伺った所下記を挙げていただきました。 職人に依存しない、まず1人ロボットを扱える社員を作る!ロボット溶接プロフェッショナルの育成 ロボットの動きの特性、ワーク特性を理解したうえでの共通化・段取り作業性を考慮した治具設計 ロボットだからこそ出来る技を理解して、使いこなすことが大事、ロボット溶接の条件出しと条件別溶接PRG構築 職人技術から設備制御技術への転換 オフラインティーチングソフトを活用して受注からロボット稼働までのL/T短縮とともに技術力の外部プロモーションとアピールで売上UP 若手にも高い技術(ロボット、デジタル)の仕事をさせる→次世代の人財育成 上記の様なポイントからもわかる様に、ロボットの能力やロボット溶接の知識、治具に求められる機能を理解したロボットプロフェッショナルの存在が会社の自動化を支えています。 つまり、システム導入時には、多品種少量生産に適したシステムやソフトウェアを導入し、実際に使いながら現場でロボットを取り扱うプロフェッショナル人材を自社で育てる事が、より多品種生産に対応出来る様になる成長過程なのだと思います。 おわりに 船井総研ではロボットやAIの導入に役立つダウンロードコンテンツをご用意しております。 是非ご活用下さい。   ■多品種少量溶接ロボット導入事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html ■このような方におすすめ 研磨工程をロボット化したい!! 多品種少量生産でロボット化が進まない TIG、MIG、レーザー溶接等、ロボット化できるか分からない 溶接工が不足しており3K業務で採用が難しい 職人、熟練作業に依存していて属人化している 溶接ロボット・自動化を相談できる所が見つからない 目次 多品種少量溶接ロボット導入の進め方 多品種少量溶接ロボットにおける具体的事例 補助金を活用した溶接ロボット導入成功事例 収録内容 「多品種少量生産対応の溶接ロボットを導入したい!」 「様々な種類の溶接をしているがロボットが活用できるのか知りたい」 「溶接工が不足しており若手も採用できず人手不足となっている」 「職人技術、熟練作業に依存しており技術継承ができていない」 「溶接ロボットを導入したいが何から始めてよいのか分からない」 本レポートでは、「多品種少量生産対応溶接ロボット」にテーマを絞り、具体的な導入方法と成功事例をご紹介いたします。 https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html ■本レポートで学べるポイント 【①】多品種少量溶接ロボット導入の進め方 ~業務分析、データ収集、作業分析、コスト効果分析、、、~ 【②】多品種少量溶接ロボット導入の具体的手法 ~溶接工程の作業分析を実施し本溶接とグラインダー仕上をロボット化~導入の具体的手法を徹底解説!! 【③】補助金を活用した多品種少量溶接ロボット導入成功事例 小ロット多品種板金加工業の溶接工程にロボット導入 7軸ロボットの導入により、人手に頼っていた溶接部門のロボット化を実現 車両用大型部品の溶接工程にロボット導入 大量生産にしか向かないロボットのイメージを払拭、はじめてのロボット導入に至る 曲面や立体形状アルミ部品のスタッド溶接加工作業をロボット化 スタートボタンを押すだけの簡単操作でパート社員でも操作が可能に 建設部品の外観部溶接工程にロボット導入 高度な技術をもった熟練作業者しかできない外観部溶接工程にロボットを導入 鍛造金型の硬化肉盛り工程へのロボット導入 ロボットオフラインソフトを用いて曲面ティーチング作業を数分で効率的に処理 特注大型門扉製造工程における溶接ロボットシステムの効率化 事前に分類した教示データの利用で、溶接スキルの有無にかかわらず誰でも操作可能に https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html ■工場AI・ロボット.comでは「無料オンライン診断サービス」を行っております 専門コンサルタントが無料でAI活用について診断致します! 無料お申し込みはこちら https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html ロボットを導入したいが初めてでやり方が分からない・・・ 多品種少量生産の溶接ロボットを導入したい 旋盤工程のワーク供給にロボットを活用したい 人による目視検査を自動化したい 多品種少量生産の工場でも導入可能かどうかを知りたい 他社の導入事例の詳細について聞きたい ロボットやAI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html 多品種少量生産の溶接加工を困難にさせる要因 溶接ロボットの多品種対応を実現するには解決しなければならない課題がいくつもあり、多くのロボットユーザーの方はリピート品かつ大ロットの製品でなければ採算が合わないと考えていると思います。 しかし、日本の中小製造業では多品種少量生産が当たり前であり、リピート品且つ大ロットの製品を受注しているケースの方が少ない為、溶接の自動化を検討する場合には必然的に多品種対応が求められます。 本コラムでは、出来るだけ多品種対応に失敗しない為のポイントと解決策を解説していきたいと思います。 多くの場合多品種対応に失敗する要因は下記になります。 ロボットへの教示時間 溶接品質 高頻度な段取り 多品種生産を想定していないシステム 多品種少量生産の場合、高頻度での加工寸法変更や品種追加が有り、その都度ロボットへの教示を行う事に対して工数(コスト)が合わない。 結果、手作業での対応でこなしてしまう事で、いつまでも自動化出来ないという事が失敗事例として最も多い要因です。 それではこのような課題に対してどのようにアプローチして多品種対応を成功させるべきでしょうか。 Point1:溶接ロボットへの教示時間の短縮(オフラインティーチングソフト活用) ・通常のロボット活用の流れ(新規品種・寸法変更品受注時) 受注してから溶接加工を開始する前にロボットへの教示が必要となる為に、溶接作業の完了が遅れます。 受注のロットが小さければ、ロボット教示をしている時間で手溶接をしてしまった方が早く終わるという事が起きてしまう為にロボットの活用が進みません。 ・多品種対応に向けたロボット活用の流れ(ロボットで生産する前提での準備) 図面の3D化とオフラインティーチングソフトの活用で教示を外段取り化する事で、多品種対応の為の教示時間による生産L/Tの増加を抑制します。 Point2:ロボット溶接の品質 溶接は、入熱による歪や収縮・膨張がある中でも要求寸法と強度を確保しなければならない非常に難しい加工であり職人を一人育成させるには10年必要と言われる技術 ロボット溶接と手溶接は同じやり方(電流や送り速度)では上手くいかない事も多い。 多品種対応する為には、ロボット溶接での溶接条件を数値化し、前提条件によって最適な設定を選択していく必要がある。(条件のパターン化して溶接PRG作成) 溶接中の歪などワークの変化に追従出来るセンシング機器をロボットに付加し、リアルタイムな補正を掛けられるシステムを構築する必要がある。 手溶接の職人では無く、ロボット溶接のプロフェッショナルを育てていく必要がある。 Point3:高頻度な段取り 製作物が変わる度に段取りが必要となるシステム 溶接時間より段取り時間の方が長い 段取りの調整・部品交換場所が多い 多品種小ロット生産では、一日に複数回の段取りを行う必要が有る事も多く、段取りの時間は日当たりの生産能力に直結します。 また、複雑な段取りは作業ミスや動作不良の原因となりやすく注意が必要です。 多品種対応の中でも共通化出来る機構やサーボモータ等を活用した電気制御の自動段取りなど出来るだけ段取り作業の少なくて済むシステムを構築する必要があります 段取りは最小限かつ再現性の高い機構と治具を用いつつ、可能な限り段取り時間を短縮していく Point4:多品種生産を想定していないシステム ロボットに興味があったので、メーカーから溶接ロボットとポジショナだけ購入した。 特定の製品を量産する為にロボットシステムを購入したが、受注終了して未使用 シーケンサ等の制御機器を用いず、ロボットコントローラーのみの制御 ロボットは汎用性が高い反面、明確な目的やスペックを想定し、その為に必要な機器を装備していないと、要求された成果を出す事は出来ません。 自動化対象とする品種の特長、要求品質、加工能力、加工範囲などを明確にした上で、要求を満たす能力を持ったシステムを構築し導入する必要がある。 ロボット研磨システム導入と投資対効果 ロボット研磨システムを構築しようと思うと数千万円単位での投資が必要となります。 大ロット小品種の生産体制ならば、ロボット研磨システムも構築しやすいでしょうが、多品種小ロット生産の場合は、システムを構築する際に入念にデータを分析してシステムへの要件定義をしないといけません。 どの品種にどのくらい工数が掛かっているのか? どの品種の加工が最も難しいのか? 既存の作業はどのような作業をしているのか? どのサイズ範囲のワークを自動化対象とするのか? どのくらいの人的工数を削減していきたいのか? 一連の研磨の中でどの範囲を自動化させるのか? どのようなオペレーションでシステムを動かすのか? 段取り変えはどのようにするのか? まとめ ●多品種少量生産の溶接加工を成功させるポイント オフラインティーチングソフト活用 ロボット溶接職人の育成 自動段取り機構(機構の共通化) 多品種生産を想定したシステム導入 自動化対象となるサイズや加工方法・要求品質を綿密に想定した中で簡単に段取り出来る機構や教示方法等、使い勝手面にも注意してシステムを構想していく。 平行してロボット担当者を人選し、長期的視点で育成していく。 ★成功事例紹介★ ●従業員10名の会社が10台のロボットを導入! 製品の標準化と複数ロボットの連動制御技術を実現しロボット設備のフル活用による品質の安定と生産性を大幅に向上した事例 北海道に拠点をおくとA社様は地域柄溶接職人の確保や人材の育成に非常に課題意識をもっており、十数年前から工場の自動化に取り組んでいたが、当時はなかなか上手くいかず溶接ロボットが現場で放置されるような状況にあったが、ある時一人の従業員がロボットに興味を持ち始め、溶接ロボットを活用する様になった事がきっかけで、徐々に溶接ロボット活用が加速し、従業員10名に対しロボットが10台あり、全従業員がロボットを操作する事が出来るまでとなった。 自動化を推進した結果、従来では3名でやる作業が1名で生産出来る様になり、従業員のワークライフバランスも向上、技術アピールにより受注拡大に成功している。 事例企業の社長に成功のポイントを伺った所下記を挙げていただきました。 職人に依存しない、まず1人ロボットを扱える社員を作る!ロボット溶接プロフェッショナルの育成 ロボットの動きの特性、ワーク特性を理解したうえでの共通化・段取り作業性を考慮した治具設計 ロボットだからこそ出来る技を理解して、使いこなすことが大事、ロボット溶接の条件出しと条件別溶接PRG構築 職人技術から設備制御技術への転換 オフラインティーチングソフトを活用して受注からロボット稼働までのL/T短縮とともに技術力の外部プロモーションとアピールで売上UP 若手にも高い技術(ロボット、デジタル)の仕事をさせる→次世代の人財育成 上記の様なポイントからもわかる様に、ロボットの能力やロボット溶接の知識、治具に求められる機能を理解したロボットプロフェッショナルの存在が会社の自動化を支えています。 つまり、システム導入時には、多品種少量生産に適したシステムやソフトウェアを導入し、実際に使いながら現場でロボットを取り扱うプロフェッショナル人材を自社で育てる事が、より多品種生産に対応出来る様になる成長過程なのだと思います。 おわりに 船井総研ではロボットやAIの導入に役立つダウンロードコンテンツをご用意しております。 是非ご活用下さい。   ■多品種少量溶接ロボット導入事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html ■このような方におすすめ 研磨工程をロボット化したい!! 多品種少量生産でロボット化が進まない TIG、MIG、レーザー溶接等、ロボット化できるか分からない 溶接工が不足しており3K業務で採用が難しい 職人、熟練作業に依存していて属人化している 溶接ロボット・自動化を相談できる所が見つからない 目次 多品種少量溶接ロボット導入の進め方 多品種少量溶接ロボットにおける具体的事例 補助金を活用した溶接ロボット導入成功事例 収録内容 「多品種少量生産対応の溶接ロボットを導入したい!」 「様々な種類の溶接をしているがロボットが活用できるのか知りたい」 「溶接工が不足しており若手も採用できず人手不足となっている」 「職人技術、熟練作業に依存しており技術継承ができていない」 「溶接ロボットを導入したいが何から始めてよいのか分からない」 本レポートでは、「多品種少量生産対応溶接ロボット」にテーマを絞り、具体的な導入方法と成功事例をご紹介いたします。 https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html ■本レポートで学べるポイント 【①】多品種少量溶接ロボット導入の進め方 ~業務分析、データ収集、作業分析、コスト効果分析、、、~ 【②】多品種少量溶接ロボット導入の具体的手法 ~溶接工程の作業分析を実施し本溶接とグラインダー仕上をロボット化~導入の具体的手法を徹底解説!! 【③】補助金を活用した多品種少量溶接ロボット導入成功事例 小ロット多品種板金加工業の溶接工程にロボット導入 7軸ロボットの導入により、人手に頼っていた溶接部門のロボット化を実現 車両用大型部品の溶接工程にロボット導入 大量生産にしか向かないロボットのイメージを払拭、はじめてのロボット導入に至る 曲面や立体形状アルミ部品のスタッド溶接加工作業をロボット化 スタートボタンを押すだけの簡単操作でパート社員でも操作が可能に 建設部品の外観部溶接工程にロボット導入 高度な技術をもった熟練作業者しかできない外観部溶接工程にロボットを導入 鍛造金型の硬化肉盛り工程へのロボット導入 ロボットオフラインソフトを用いて曲面ティーチング作業を数分で効率的に処理 特注大型門扉製造工程における溶接ロボットシステムの効率化 事前に分類した教示データの利用で、溶接スキルの有無にかかわらず誰でも操作可能に https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html ■工場AI・ロボット.comでは「無料オンライン診断サービス」を行っております 専門コンサルタントが無料でAI活用について診断致します! 無料お申し込みはこちら https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html ロボットを導入したいが初めてでやり方が分からない・・・ 多品種少量生産の溶接ロボットを導入したい 旋盤工程のワーク供給にロボットを活用したい 人による目視検査を自動化したい 多品種少量生産の工場でも導入可能かどうかを知りたい 他社の導入事例の詳細について聞きたい ロボットやAI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html

DXを進めていくべきZ世代の意識

2021.11.18

今、世界ではAIやIoTなど様々な方法でDX化が加速しています。遅れていると言われている日本も例外ではなく、今後さらに加速することが予想されています。このDX化に伴い、これからのビジネスを引っ張っていくデジタルネイティブ層、いわゆる「Z世代」に注目が集まっています。 Z世代とは、1990年代後半から2000年代前半に生まれた世代のことで、現在20~27歳を指します。Z世代が生まれた頃は、すでにインターネットが広く利用されており、デジタルネイティブでありSNSネイティブという特徴を持っています。 2023年3月卒業(修了)予定の大学生・大学院生467名を対象とした「DX(デジタルトランスフォーメーション)」に関するアンケート調査(就職情報サービス会社学情)によると就職活動において、「企業がDXを推進していることを知ると志望度が上がりますか?」と聞いたところ、49.6%が「志望度が上がる」「どちらかと言えば志望度が上がる」と回答し、約半数の学生がDXに取り組む企業に好感を持っているという結果が得られました。 また、就職活動において、企業のDXに関する取り組みを「意識する」と回答した学生は35.1%に上り、「デジタル強化は不可欠だと思う」「企業がDX推進にどのように取り組んでいるかを知ることで、企業がどの事業分野を強化しようとしているか推し量れると思う」といった声が寄せられるなど、関心の高さが伺える結果が発表されています。 企業にとって、DXとはデジタル活用によるビジネス変革だけを意味せず、もはや人材確保の面でも、重要な戦略となっています。上記のアンケートは新卒のみのアンケート結果ですが、これは中途採用市場に同様のアンケートを行っても同じ傾向の結果となるでしょう。いずれにせよ、あと5年もすれば転職市場もZ世代がメインになり、この傾向が変わる可能性は低く、より強い傾向が出るようになるでしょう。 新卒転職市場では、デジタルを積極的に活用しない企業(アナログな方法から抜けだせない企業)は魅力がなく、優秀な人材は集まらないようになっていきます。逆にDXに積極的に取り組む企業にはデジタルに関心がある優秀な人材が集まりやすく、さらにDX化が促されているという好循環が生まれていきます。 今、巷ではDXという言葉がブームになっていますが、Z世代からすると意味が分からないかもしれません。彼らにとってデジタルは身近なものであって、それが当たり前だからです。もしかしたら、彼らからすれば日本のアナログ的な仕事の仕方は理解できないものになるかもしれません。 しかし、それはとても重要な気付きであり、日本は彼らの感覚をなくさせてはいけません。 これまでの企業の既存のやり方に彼らを染めてはいけません。Z世代は、これまでの新卒以上に企業の将来を担う大きな人財となりうる可能性を秘めています。 その一方で、現代のビジネスパーソンの意識もコロナをきっかけに大きく変わりました。 デジタル化自体が低調な日本において、踏ん切りがつかなかったデジタル化に踏み切るきっかけとなりました。そう言った意味でコロナは日本のビジネスの在り方に大きな爪痕を残していきました。コロナはいずれ収束していき、我々の生活も外目からはコロナ前に戻るでしょう。しかし、絶対に戻らないものがあります。 それは「人の意識です」。 コロナ禍のDXブームにより、デジタルを活用することによって、よりたくさんの業務が軽減されることが我々に深く意識づけられました。「デジタル化すれば、目の前の作業があっという間に終わるかもしれない。もっと効率的になるかもしれない」ということをより多くのビジネスパーソンが意識するようになったと思います。この意識がコロナ前に戻ることはありません。自社の業務がアナログ的でムダな労力を求め続けられるのであれば、転職を検討するというビジネスパーソンも多くなっていくでしょう。これから就職するZ世代にしろ、今のビジネスパーソンにしろ「企業がDXに取り組むことは大前提」となっています。企業にとっては規模を問わず、DXでもデジタル化でも取り組まないという選択はすでにありません。 人財が集まらなければ、会社は衰退していきます。 DXはブームではなく、取り組むことが当たり前の時代に今後は間違いなくなっていきます。 5年前と今と比較して、業務の仕方が変わっていない企業は多いと思いますが、今と5年後を比較して、業務の仕方が変わっていない企業が今後発展していくことは難しいことが考えられます。 ■無料ダウンロードレポートのご案内 中小製造業経営者様向けに無料ダウンロードレポートをご用意しております。 “2025年崖レポートから始まったDX~コロナ禍で起こったことを徹底解説”と題して、製造業におけるDXの基本、及びコロナウィルスとの関係性を解説しております。 是非、ダウンロードして頂き貴社の経営にお役立て下さい。   この1冊で製造業におけるDXの基本とコロナの関係性が分かる! ※製造業限定(製造業以外の企業・団体からのダウンロードについては、お断りさせていただく場合がございます。) 2018年経済産業省DXレポート【2025年の崖】問題 DX(Digital Transformation)とは何か? コロナ禍で起きたこととDXの本質~働き方改革とDX 上記の事例レポートは無料でダウンロードいただくことができます。 ご興味のある方は、是非チェックしてみてください。 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/download/210506_02/ ■工場AI・ロボット.comでは「無料オンライン診断サービス」を行っております 専門コンサルタントが無料でDX活用について診断致します! DX活用したいが初めてでやり方が分からない・・・ DXで工数を削減したい・・・ DXで生産性を向上させたい・・・ 何から手を付けていいか分からない・・・ デジタルに強い人材がいない・・・ 他社の導入事例の詳細について聞きたい DXについて相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html 今、世界ではAIやIoTなど様々な方法でDX化が加速しています。遅れていると言われている日本も例外ではなく、今後さらに加速することが予想されています。このDX化に伴い、これからのビジネスを引っ張っていくデジタルネイティブ層、いわゆる「Z世代」に注目が集まっています。 Z世代とは、1990年代後半から2000年代前半に生まれた世代のことで、現在20~27歳を指します。Z世代が生まれた頃は、すでにインターネットが広く利用されており、デジタルネイティブでありSNSネイティブという特徴を持っています。 2023年3月卒業(修了)予定の大学生・大学院生467名を対象とした「DX(デジタルトランスフォーメーション)」に関するアンケート調査(就職情報サービス会社学情)によると就職活動において、「企業がDXを推進していることを知ると志望度が上がりますか?」と聞いたところ、49.6%が「志望度が上がる」「どちらかと言えば志望度が上がる」と回答し、約半数の学生がDXに取り組む企業に好感を持っているという結果が得られました。 また、就職活動において、企業のDXに関する取り組みを「意識する」と回答した学生は35.1%に上り、「デジタル強化は不可欠だと思う」「企業がDX推進にどのように取り組んでいるかを知ることで、企業がどの事業分野を強化しようとしているか推し量れると思う」といった声が寄せられるなど、関心の高さが伺える結果が発表されています。 企業にとって、DXとはデジタル活用によるビジネス変革だけを意味せず、もはや人材確保の面でも、重要な戦略となっています。上記のアンケートは新卒のみのアンケート結果ですが、これは中途採用市場に同様のアンケートを行っても同じ傾向の結果となるでしょう。いずれにせよ、あと5年もすれば転職市場もZ世代がメインになり、この傾向が変わる可能性は低く、より強い傾向が出るようになるでしょう。 新卒転職市場では、デジタルを積極的に活用しない企業(アナログな方法から抜けだせない企業)は魅力がなく、優秀な人材は集まらないようになっていきます。逆にDXに積極的に取り組む企業にはデジタルに関心がある優秀な人材が集まりやすく、さらにDX化が促されているという好循環が生まれていきます。 今、巷ではDXという言葉がブームになっていますが、Z世代からすると意味が分からないかもしれません。彼らにとってデジタルは身近なものであって、それが当たり前だからです。もしかしたら、彼らからすれば日本のアナログ的な仕事の仕方は理解できないものになるかもしれません。 しかし、それはとても重要な気付きであり、日本は彼らの感覚をなくさせてはいけません。 これまでの企業の既存のやり方に彼らを染めてはいけません。Z世代は、これまでの新卒以上に企業の将来を担う大きな人財となりうる可能性を秘めています。 その一方で、現代のビジネスパーソンの意識もコロナをきっかけに大きく変わりました。 デジタル化自体が低調な日本において、踏ん切りがつかなかったデジタル化に踏み切るきっかけとなりました。そう言った意味でコロナは日本のビジネスの在り方に大きな爪痕を残していきました。コロナはいずれ収束していき、我々の生活も外目からはコロナ前に戻るでしょう。しかし、絶対に戻らないものがあります。 それは「人の意識です」。 コロナ禍のDXブームにより、デジタルを活用することによって、よりたくさんの業務が軽減されることが我々に深く意識づけられました。「デジタル化すれば、目の前の作業があっという間に終わるかもしれない。もっと効率的になるかもしれない」ということをより多くのビジネスパーソンが意識するようになったと思います。この意識がコロナ前に戻ることはありません。自社の業務がアナログ的でムダな労力を求め続けられるのであれば、転職を検討するというビジネスパーソンも多くなっていくでしょう。これから就職するZ世代にしろ、今のビジネスパーソンにしろ「企業がDXに取り組むことは大前提」となっています。企業にとっては規模を問わず、DXでもデジタル化でも取り組まないという選択はすでにありません。 人財が集まらなければ、会社は衰退していきます。 DXはブームではなく、取り組むことが当たり前の時代に今後は間違いなくなっていきます。 5年前と今と比較して、業務の仕方が変わっていない企業は多いと思いますが、今と5年後を比較して、業務の仕方が変わっていない企業が今後発展していくことは難しいことが考えられます。 ■無料ダウンロードレポートのご案内 中小製造業経営者様向けに無料ダウンロードレポートをご用意しております。 “2025年崖レポートから始まったDX~コロナ禍で起こったことを徹底解説”と題して、製造業におけるDXの基本、及びコロナウィルスとの関係性を解説しております。 是非、ダウンロードして頂き貴社の経営にお役立て下さい。   この1冊で製造業におけるDXの基本とコロナの関係性が分かる! ※製造業限定(製造業以外の企業・団体からのダウンロードについては、お断りさせていただく場合がございます。) 2018年経済産業省DXレポート【2025年の崖】問題 DX(Digital Transformation)とは何か? コロナ禍で起きたこととDXの本質~働き方改革とDX 上記の事例レポートは無料でダウンロードいただくことができます。 ご興味のある方は、是非チェックしてみてください。 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/download/210506_02/ ■工場AI・ロボット.comでは「無料オンライン診断サービス」を行っております 専門コンサルタントが無料でDX活用について診断致します! DX活用したいが初めてでやり方が分からない・・・ DXで工数を削減したい・・・ DXで生産性を向上させたい・・・ 何から手を付けていいか分からない・・・ デジタルに強い人材がいない・・・ 他社の導入事例の詳細について聞きたい DXについて相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html

帳票のペーパーレス、デジタル化で「工数の削減」と「生産性を向上」させた事例

2021.11.11

はじめに 現場には様々な帳票、チェックシートが溢れています。 日報、作業標準、点検チェックシート、設備故障記録、作業実績表、等、、、 これらの帳票、及びチェックシートをデジタル化、ペーパーレス化することで工数を削減、及び生産性を向上させた事例をご紹介致します。 CASE1:「作業日報をデジタル化して工数を削減した事例」 A県で樹脂加工品を製造しているA社では紙の作業日報にその日の出来高を手書きで記入していました。現場作業者は紙への記入に加え、現場PCにその数量を入力する、という作業も行っています。 さらに、その記録された実績は事務員により紙とPC入力の間違いが無いかの確認が行われ、ムダな工数が発生していました。 また、生産管理担当者は前日実績を翌日の生産計画に反映するため、朝早く出勤し各ラインから日報の実績をかき集め、生産計画を立案する、というような業務が行われていました。 そこでこのA社では作業日報兼実績記録表をタブレット入力しデジタル化することで工数の削減を目指しました。 作業員は実績をタブレットに入力することで紙とPCへの二重の実績記録作業から解放されました。 さらに、このタブレットに入力された実績は自動でシステムと連携し入力されるため、事務員によるムダな確認作業も不要となりました。 さらに、毎朝生産管理担当者がかき集めていた実績は、作業員がタブレットによりデジタルデータとして入力しているため、現場から紙を集めて数字抽出し実績を集計する、という手間が無くなったため、毎朝の実績収集に掛けていた時間が丸々削減できる結果となりました。 このタブレットにより入力された実績はデジタルデータのため、例えば上記のように生産計画立案のためのデータであり、 ラインごと、担当者ごとの生産性が分かるようになり現場改善のデータとして活用できる リアルタイムで実績が把握できるので都度現場確認しなくても工程進捗が確認できる 等、今後様々な活用方法が期待されます。 CASE2:「故障記録をデジタル化して生産性を向上した事例」 B県で金属加工を行っているB社では設備故障が頻発し生産性が低下している、という課題をもっていました。 設備故障の記録は現場作業者により紙の故障記録に手書きで記録されていました。 その手書きの記録は管理者が1件1件Excelに入力しています。 しかし、このExcelに入力されたデータは、特に活用されておらず、ただ履歴が溜まっているだけ、という状態となっていました。 さらに、その履歴から故障箇所や故障内容の分析をしようとしても、作業者による書き方の違いで、データ分析が上手くいかず、故障が多く発生している箇所や故障内容の原因を突き止めることができない、よって故障が頻発する、という悪循環に陥っていました。 そこでB社では故障記録をタブレット入力しデジタル化することで故障低減を目的とするデジタル化を推進しました。 故障個所や故障内容について区分を決めてリストから選択して作業者に入力させることで、作業者の書き方による違いを無くし、故障履歴から正確に箇所や内容を特定できるようにしました。 さらに、故障データを自動でグラフ化するシステムを採用し、管理者がわざわざExcelデータを集計してグラフ化・分析しなくても、すぐに欲しい情報が見えるな仕組みとすることで、どの設備のどの箇所のどんな故障が生産性を下げている原因なのか、を見えるようにしました。 それにより、設備故障が大幅に削減され生産性が工場した事例になります。 おわりに 以上、現場の帳票をデジタル化、ペーパーレス化して「工数の削減」と「生産性を向上」させた事例について解説をさせていただきました。 最後までお読みいただきありがとうございました。 AIやデジタル技術を活用した「工場のAI・デジタル化」に関する事例を以下のレポート内でご紹介しております。 中堅・中小製造業 経営者様向け “工場のAI・デジタル化”最新事例解説レポート   上記の事例レポートは無料でダウンロードいただくことができます。 ご興味のある方は、是非チェックしてみてください。 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/download/201208/ ■オンラインセミナー開催のお知らせ 生産管理・基幹システム”革命セミナー”2022! ▼セミナーお申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/event/ 【このような方にオススメ】 従業員30名~200名の板金・プレス・溶接加工業の社長様 人手の掛かる作業や二重三重の生産管理・購買管理・原価管理業務が多い板金・プレス・溶接加工業の社長様 工程毎の工数、製品毎の原価等を把握し現場改善を進めたいがどのようにはじめたら良いか分からない社長様 生産管理・基幹システムを入れ替えて効率を上げたいが、どのように始めれば良いか分からない社長様 職人・属人化している生産管理・購買管理・原価管理業務が多い板金・プレス・溶接加工業の社長様 【開催日程】 全てオンライン開催となります 2022/02/22 (火) 13:00~15:00 2022/02/24 (木) 13:00~15:00 2022/03/01 (火) 13:00~15:00 2022/03/03 (木) 13:00~15:00 お申し込みはこちらから⇒ このセミナーは終了しました。最新のセミナーはこちらから。 https://smart-factory.funaisoken.co.jp/event/   ■工場AI・ロボット.comでは「無料オンライン診断サービス」を行っております 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html   [sc name="ai-digital"][/sc] はじめに 現場には様々な帳票、チェックシートが溢れています。 日報、作業標準、点検チェックシート、設備故障記録、作業実績表、等、、、 これらの帳票、及びチェックシートをデジタル化、ペーパーレス化することで工数を削減、及び生産性を向上させた事例をご紹介致します。 CASE1:「作業日報をデジタル化して工数を削減した事例」 A県で樹脂加工品を製造しているA社では紙の作業日報にその日の出来高を手書きで記入していました。現場作業者は紙への記入に加え、現場PCにその数量を入力する、という作業も行っています。 さらに、その記録された実績は事務員により紙とPC入力の間違いが無いかの確認が行われ、ムダな工数が発生していました。 また、生産管理担当者は前日実績を翌日の生産計画に反映するため、朝早く出勤し各ラインから日報の実績をかき集め、生産計画を立案する、というような業務が行われていました。 そこでこのA社では作業日報兼実績記録表をタブレット入力しデジタル化することで工数の削減を目指しました。 作業員は実績をタブレットに入力することで紙とPCへの二重の実績記録作業から解放されました。 さらに、このタブレットに入力された実績は自動でシステムと連携し入力されるため、事務員によるムダな確認作業も不要となりました。 さらに、毎朝生産管理担当者がかき集めていた実績は、作業員がタブレットによりデジタルデータとして入力しているため、現場から紙を集めて数字抽出し実績を集計する、という手間が無くなったため、毎朝の実績収集に掛けていた時間が丸々削減できる結果となりました。 このタブレットにより入力された実績はデジタルデータのため、例えば上記のように生産計画立案のためのデータであり、 ラインごと、担当者ごとの生産性が分かるようになり現場改善のデータとして活用できる リアルタイムで実績が把握できるので都度現場確認しなくても工程進捗が確認できる 等、今後様々な活用方法が期待されます。 CASE2:「故障記録をデジタル化して生産性を向上した事例」 B県で金属加工を行っているB社では設備故障が頻発し生産性が低下している、という課題をもっていました。 設備故障の記録は現場作業者により紙の故障記録に手書きで記録されていました。 その手書きの記録は管理者が1件1件Excelに入力しています。 しかし、このExcelに入力されたデータは、特に活用されておらず、ただ履歴が溜まっているだけ、という状態となっていました。 さらに、その履歴から故障箇所や故障内容の分析をしようとしても、作業者による書き方の違いで、データ分析が上手くいかず、故障が多く発生している箇所や故障内容の原因を突き止めることができない、よって故障が頻発する、という悪循環に陥っていました。 そこでB社では故障記録をタブレット入力しデジタル化することで故障低減を目的とするデジタル化を推進しました。 故障個所や故障内容について区分を決めてリストから選択して作業者に入力させることで、作業者の書き方による違いを無くし、故障履歴から正確に箇所や内容を特定できるようにしました。 さらに、故障データを自動でグラフ化するシステムを採用し、管理者がわざわざExcelデータを集計してグラフ化・分析しなくても、すぐに欲しい情報が見えるな仕組みとすることで、どの設備のどの箇所のどんな故障が生産性を下げている原因なのか、を見えるようにしました。 それにより、設備故障が大幅に削減され生産性が工場した事例になります。 おわりに 以上、現場の帳票をデジタル化、ペーパーレス化して「工数の削減」と「生産性を向上」させた事例について解説をさせていただきました。 最後までお読みいただきありがとうございました。 AIやデジタル技術を活用した「工場のAI・デジタル化」に関する事例を以下のレポート内でご紹介しております。 中堅・中小製造業 経営者様向け “工場のAI・デジタル化”最新事例解説レポート   上記の事例レポートは無料でダウンロードいただくことができます。 ご興味のある方は、是非チェックしてみてください。 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/download/201208/ ■オンラインセミナー開催のお知らせ 生産管理・基幹システム”革命セミナー”2022! ▼セミナーお申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/event/ 【このような方にオススメ】 従業員30名~200名の板金・プレス・溶接加工業の社長様 人手の掛かる作業や二重三重の生産管理・購買管理・原価管理業務が多い板金・プレス・溶接加工業の社長様 工程毎の工数、製品毎の原価等を把握し現場改善を進めたいがどのようにはじめたら良いか分からない社長様 生産管理・基幹システムを入れ替えて効率を上げたいが、どのように始めれば良いか分からない社長様 職人・属人化している生産管理・購買管理・原価管理業務が多い板金・プレス・溶接加工業の社長様 【開催日程】 全てオンライン開催となります 2022/02/22 (火) 13:00~15:00 2022/02/24 (木) 13:00~15:00 2022/03/01 (火) 13:00~15:00 2022/03/03 (木) 13:00~15:00 お申し込みはこちらから⇒ このセミナーは終了しました。最新のセミナーはこちらから。 https://smart-factory.funaisoken.co.jp/event/   ■工場AI・ロボット.comでは「無料オンライン診断サービス」を行っております 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html   [sc name="ai-digital"][/sc]

中小・零細製造業のデジタル化【基幹システム導入_システム導入プロジェクト後編】

2021.11.04

1.はじめに 本コラムでは、社内の情報システムの専門家、いわゆる情シス部隊が存在しない企業様において、新たに基幹システム(生産管理、工程管理、会計管理、購買管理といった複数の機能群を有し、一つのデータベースで統合したシステム、ERP(Enterprise Resources Planning)ともいう)を導入する場合の検討から導入、活用までの流れについて、数回のシリーズに分けてお届けさせていただきます。 自社のIT関連の情報を全て把握している人が存在しない場合、新たにシステム導入をするにあたってどのようにハンドリングしてよいかがわからず、ベンダーにまかせっきりになってしまい、導入後も、システムの全体像を把握できず、活用できない場合があります。 そのような状態では、導入したシステムを活用した業務改善を進めることもできず、事業を発展させる機会を逸することになります。 そこで、導入を考え始めたときからどのような手順で進めれば導入後もシステムを活用できる環境を作ることが出来るかについて提案させていただいているのが本コラムシリーズです。 是非、バックナンバーも参考にしていただければ幸いです。 第6回(最終回)は、、第5回に引き続き、システム導入プロジェクトを進める上での現場への定着についてポイントを解説いたします。 2.前回までの振り返りと本コラム内容について 前回までのコラムでは、検討開始の初動から仕様検討をし、システムベンダーを決める際の検討ポイント、現場に受け入れてもらうためのシステム導入プロジェクトのポイントについて解説をしました。 会社全体が新しいシステム導入の理解を示したら、最後はそのシステムを如何にして現場に定着し、効果を発揮していくかを考えます。本コラムでは、新システムの定着と活用について解説いたします。 3.新システムの定着・活用 新しいシステム導入が会社全体に周知され、その重要性を理解してもらうことが出来ました。 今後は、現場を巻き込みながら、新システムを業務フローに組み込んで、日常業務に定着させる作業を進めていきます。 さらに、システムを活用することで、業務の改善に取り組んでいきます。 そのためのポイントとは、(1)システムに合せた現行業務の改善・定着、(2)現場のシステム機能の理解です。各項目について、解説させていただきます。 (1)システムに合せた現行業務の改善・定着について解説します。 ベンダーを検討する段階で新システム導入を念頭に置いた、業務改善・業務内容の変更については、検討をしていましたが、この段階になると、より具体性を持った検討をすることが重要になります。 今までの検討では、主要業務に漏れがないかを確認していた段階でした。次は、イレギュラーな処置などを含めて、より詳細に検討をしていくことになります。この時の考え方のポイントとしては、その業務の意味・得たい成果をきちんと理解し、既存の業務内容、やり方にとらわれず、システムを活用することで、どうやって効率的に業務の成果を得ることが出来るかを考えることが大切です。 既存業務にこだわるあまり、全ての業務を新システムに移行できずに、2つのシステムを使い続けることになることも良くあることです。 また、こうなってしまうと定着も困難です。関係者で知恵を絞って改善を進める必要があります。 (2) 現場のシステム機能の理解について解説します。 人の得手不得手があるので、現場全員が同じレベルの知識を持つことは現実的ではありませんが、最低限のレベルは全員が理解しておくことが重要です。 理由としては、システムを活用した改善を進めるために、職場全体の知恵を必要とするためです。 システムに詳しい人と業務内容に詳しい人が同一人物とは限らないため、相互にフォローをしながらでないと、良い業務改善を行うことは出来ません。 4.おわりに 以上、新システムを現場に定着させて、更に現場でシステムを活用して業務改善を進めるポイントについて解説をさせていただきました。 中小・零細製造業のデジタル化【基幹システム導入_システム導入プロジェクト後編】の解説は以上です。最後までお読みいただきありがとうございました。 AIやデジタル技術を活用した「工場のAI・デジタル化」に関する事例を以下のレポート内でご紹介しております。 中堅・中小製造業 経営者様向け “工場のAI・デジタル化”最新事例解説レポート   上記の事例レポートは無料でダウンロードいただくことができます。 ご興味のある方は、是非チェックしてみてください。 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/download/201208/ 無料オンライン診断サービスのご案内 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html 1.はじめに 本コラムでは、社内の情報システムの専門家、いわゆる情シス部隊が存在しない企業様において、新たに基幹システム(生産管理、工程管理、会計管理、購買管理といった複数の機能群を有し、一つのデータベースで統合したシステム、ERP(Enterprise Resources Planning)ともいう)を導入する場合の検討から導入、活用までの流れについて、数回のシリーズに分けてお届けさせていただきます。 自社のIT関連の情報を全て把握している人が存在しない場合、新たにシステム導入をするにあたってどのようにハンドリングしてよいかがわからず、ベンダーにまかせっきりになってしまい、導入後も、システムの全体像を把握できず、活用できない場合があります。 そのような状態では、導入したシステムを活用した業務改善を進めることもできず、事業を発展させる機会を逸することになります。 そこで、導入を考え始めたときからどのような手順で進めれば導入後もシステムを活用できる環境を作ることが出来るかについて提案させていただいているのが本コラムシリーズです。 是非、バックナンバーも参考にしていただければ幸いです。 第6回(最終回)は、、第5回に引き続き、システム導入プロジェクトを進める上での現場への定着についてポイントを解説いたします。 2.前回までの振り返りと本コラム内容について 前回までのコラムでは、検討開始の初動から仕様検討をし、システムベンダーを決める際の検討ポイント、現場に受け入れてもらうためのシステム導入プロジェクトのポイントについて解説をしました。 会社全体が新しいシステム導入の理解を示したら、最後はそのシステムを如何にして現場に定着し、効果を発揮していくかを考えます。本コラムでは、新システムの定着と活用について解説いたします。 3.新システムの定着・活用 新しいシステム導入が会社全体に周知され、その重要性を理解してもらうことが出来ました。 今後は、現場を巻き込みながら、新システムを業務フローに組み込んで、日常業務に定着させる作業を進めていきます。 さらに、システムを活用することで、業務の改善に取り組んでいきます。 そのためのポイントとは、(1)システムに合せた現行業務の改善・定着、(2)現場のシステム機能の理解です。各項目について、解説させていただきます。 (1)システムに合せた現行業務の改善・定着について解説します。 ベンダーを検討する段階で新システム導入を念頭に置いた、業務改善・業務内容の変更については、検討をしていましたが、この段階になると、より具体性を持った検討をすることが重要になります。 今までの検討では、主要業務に漏れがないかを確認していた段階でした。次は、イレギュラーな処置などを含めて、より詳細に検討をしていくことになります。この時の考え方のポイントとしては、その業務の意味・得たい成果をきちんと理解し、既存の業務内容、やり方にとらわれず、システムを活用することで、どうやって効率的に業務の成果を得ることが出来るかを考えることが大切です。 既存業務にこだわるあまり、全ての業務を新システムに移行できずに、2つのシステムを使い続けることになることも良くあることです。 また、こうなってしまうと定着も困難です。関係者で知恵を絞って改善を進める必要があります。 (2) 現場のシステム機能の理解について解説します。 人の得手不得手があるので、現場全員が同じレベルの知識を持つことは現実的ではありませんが、最低限のレベルは全員が理解しておくことが重要です。 理由としては、システムを活用した改善を進めるために、職場全体の知恵を必要とするためです。 システムに詳しい人と業務内容に詳しい人が同一人物とは限らないため、相互にフォローをしながらでないと、良い業務改善を行うことは出来ません。 4.おわりに 以上、新システムを現場に定着させて、更に現場でシステムを活用して業務改善を進めるポイントについて解説をさせていただきました。 中小・零細製造業のデジタル化【基幹システム導入_システム導入プロジェクト後編】の解説は以上です。最後までお読みいただきありがとうございました。 AIやデジタル技術を活用した「工場のAI・デジタル化」に関する事例を以下のレポート内でご紹介しております。 中堅・中小製造業 経営者様向け “工場のAI・デジタル化”最新事例解説レポート   上記の事例レポートは無料でダウンロードいただくことができます。 ご興味のある方は、是非チェックしてみてください。 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/download/201208/ 無料オンライン診断サービスのご案内 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html

【11月最新版】“ヒトを活かす製造業DX”の実践事例とは?

2021.10.28

今回は、製造業におけるDX(デジタル・トランスフォーメーション)の最新事例についてお伝えさせていただきます。 ▼最新事例レポート!! 従業員数30~300名規模のメーカー経営者様向け“営業&設計部門の生産性向上”最新事例解説レポート https://www.funaisoken.co.jp/dl-contents/smart-factory__00262 今回ご紹介するのは、メーカーにおけるデジタル技術を活用した“営業&設計部門の生産性向上”に関する最新事例です 最新事例サマリー 営業担当者の提案と設計担当者の工数削減をデジタルがサポート Before(システム導入前の状態と主な課題) 顧客との商談を経て、営業担当者から設計部へ「顧客提案用のCAD図面を作ってほしい」という要望が頻発。 設計部は本業である「受注後」の詳細設計業務へ注力できないという状況に。 全体として受注に繋がらない案件も多く、失注したら設計担当者の工数がそのままマイナス(赤字)となっていた。 After(システム導入後の主な課題解決効果) CADを使えない営業担当者でも顧客との商談中に必要情報を入力することで、その場で顧客提案用のCAD図面を自動作成できるシステムを導入。 結果として、設計部の業務負担が激減。設計担当者は空いた時間で「より付加価値の高い詳細設計業務」に集中できるようになった。 取り組みのポイント ▼営業担当者 「CAD図面の作成依頼⇒顧客へCAD図面を提示する」までの時間を 「1週間以上⇒数分間」へ大幅に短縮! ▼設計担当者 失注リスクのある「受注前」の設計業務の工数を大幅カット &「受注後」の詳細設計業務へリソースを集中 ⇒設計担当者の付加価値アップを実現! ⇒たった1種類のシステムが、営業&設計部門の生産性向上に貢献! 以下の無料ダウンロードレポートでは、本メルマガ・コラムの内容をより詳しく解説しています。是非、ダウンロードして頂き貴社の経営にお役立てください。 ▼最新事例レポート!! 従業員数30~300名規模のメーカー経営者様向け“営業&設計部門の生産性向上”最新事例解説レポート 上記の事例レポートは無料でダウンロードいただくことができます https://www.funaisoken.co.jp/dl-contents/smart-factory__00262 その他事例レポート一覧はこちら https://smart-factory.funaisoken.co.jp/download/ 無料オンライン診断サービスのご案内 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html いつも当メルマガ・コラムをご愛読いただきありがとうございます。 今回は、製造業におけるDX(デジタル・トランスフォーメーション)の最新事例についてお伝えさせていただきます。 ▼最新事例レポート!! 従業員数30~300名規模のメーカー経営者様向け“営業&設計部門の生産性向上”最新事例解説レポート https://www.funaisoken.co.jp/dl-contents/smart-factory__00262 今回ご紹介するのは、メーカーにおけるデジタル技術を活用した“営業&設計部門の生産性向上”に関する最新事例です 最新事例サマリー 営業担当者の提案と設計担当者の工数削減をデジタルがサポート Before(システム導入前の状態と主な課題) 顧客との商談を経て、営業担当者から設計部へ「顧客提案用のCAD図面を作ってほしい」という要望が頻発。 設計部は本業である「受注後」の詳細設計業務へ注力できないという状況に。 全体として受注に繋がらない案件も多く、失注したら設計担当者の工数がそのままマイナス(赤字)となっていた。 After(システム導入後の主な課題解決効果) CADを使えない営業担当者でも顧客との商談中に必要情報を入力することで、その場で顧客提案用のCAD図面を自動作成できるシステムを導入。 結果として、設計部の業務負担が激減。設計担当者は空いた時間で「より付加価値の高い詳細設計業務」に集中できるようになった。 取り組みのポイント ▼営業担当者 「CAD図面の作成依頼⇒顧客へCAD図面を提示する」までの時間を 「1週間以上⇒数分間」へ大幅に短縮! ▼設計担当者 失注リスクのある「受注前」の設計業務の工数を大幅カット &「受注後」の詳細設計業務へリソースを集中 ⇒設計担当者の付加価値アップを実現! ⇒たった1種類のシステムが、営業&設計部門の生産性向上に貢献! 以下の無料ダウンロードレポートでは、本メルマガ・コラムの内容をより詳しく解説しています。是非、ダウンロードして頂き貴社の経営にお役立てください。 ▼最新事例レポート!! 従業員数30~300名規模のメーカー経営者様向け“営業&設計部門の生産性向上”最新事例解説レポート 上記の事例レポートは無料でダウンロードいただくことができます https://www.funaisoken.co.jp/dl-contents/smart-factory__00262 その他事例レポート一覧はこちら https://smart-factory.funaisoken.co.jp/download/ 無料オンライン診断サービスのご案内 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html

板金加工向け産業用ロボットを活用したロボット研磨・仕上げ加工の自動化解説(属人的で3Kかつ加工時間が膨大な研磨作業を自動化するメリット)

2021.10.20

研磨作業の加工方法 一括りに研磨と言っても様々な種類があります。鋳造品・機械加工品のバリ取りのような粗取り研磨から光沢面を作るミクロン単位の微細研磨まで幅広く研磨は存在しますが、加工方法については、どの研磨も基本的には砥石を回転させて被加工物に接触させ、その砥石を押し付ける力加減や砥石の番手(粗さ)を人が被加工物の表面状態を常時判断しながら職人技にて加工しているのがいまだに主流です。(摩擦研磨の場合) もちろん人の感覚でなければ仕上げ出来ない物があるのも事実ですが、実際には品質要求が高くない研磨作業でも、全て人手で作業をしている製造企業が圧倒的に多いです。 手研磨作業が人に与える負荷 板金加工業等で手研摩を行う際に良く使用する手工具の代表例として手持ち用のディスクグラインダーやサンダー等がありますが、これらの工具は非常に重く、かつ振動が発生します。 研磨作業を経験した事がある方は分かるでしょうが、このハンド式の研磨機を取り扱っている時、作業者は非常に緊張します。 重たくて高速回転している刃物をちゃんと持っていないと、ケガなどの災害を発生してしまったり、加工物に傷をつけてしまったりするので細心の注意を払って作業をしているので非常に緊張状態になります。 そして、加工中は削った金属や砥石のカスが周囲に飛散します。 飛び散った金属カスは高温になっている場合もあり、保護メガネや保護マスクの着用をしていないと失明等の災害が発生するリスクもあります。 バフのような柔らかい砥石と使う時や樹脂製品の研磨の場合には、研磨をする事で大量の粉塵が中に舞いますので、毎日作業される作業者の方は健康面を考慮して防塵マスクを着用して作業されています。まさにキツイ・キタナイ・キケンの3K作業です。 手研磨作業が企業に与える負荷 同時にある程度の表面状態を作りこむような場合には、非常に長時間の加工時間を有します。 例えば製函物で外観品質要求の高い製品には、溶接後にビードが見えない状態まで表面を研磨する且つ、全体が一定水準の表面状態に加工する必要があるので、砥石を数種類変更しながら研磨、更にバフと研磨材を用いて磨いていきます。 この様な研磨作業ではその商品を作る生産工程の中で最も研磨に時間が掛かっているような場合が多く見かけます。 製函物を製造する場合には、基本的にタレパンや複合機、ブレーキプレス、溶接、研磨の工程順で加工が進みますが、その一連の工程で最も時間が掛かるのが研磨工程の場合、生産原価でもある職人の工数がかさみ、利益率が極度に低くなってしまう事もあります。 特定の人しか作業出来ないので、欠員や退職等を理由に加工品質を維持出来なくなるというリスクもあります。 ロボット研磨システムの概況 上述したように手研摩作業には3K作業・ノウハウが必要・工数負担などの特長があり、このような作業こそ自動化を検討するべき必要があると思います。 直近では6軸垂直多関節ロボット用のグラインダやベルトサンダー・バフ等様々なハンドエフェクタが開発され販売されています。 研磨の自動化は中国や欧州が日本より進んでいる印象ですが、日本のロボットメーカーも研磨装置の開発と販売をしていますし、海外のロボット研磨ツールを取り扱う代理店も着々と増えてきており、ロボットを用いた研磨のテスト・評価をしてくれる代理店やロボットによる研磨システムを構築してくれるシステムインテグレータも増えてきております。 ロボット用研磨ツールの特長 ロボット用ハンドエフェクタとして販売されているロボット用研磨ツールですが、直近のツールはトルクセンサーが内蔵しており、倣い制御が可能です。 砥石は使用していると小さくなってきますので、ロボットできめられた軌道を往復するだけでは、研磨出来なくなってしまいますが、倣い機能がついている場合、いつも同じちから加減で加工をする事が可能です。砥石の種類も粗いディスクタイプ、ペーパーディスク、バフ等のラインナップがあり、ATC(オートツールチェンジャー)を活用して砥石自動交換する事も出来ます。 被加工物を固定してロボットをフルに動かして複雑な形状に対応する事も可能ですが、ポジショナ等外部回転軸を活用して被加工物を回転させながら研磨する事も可能です。 研磨についての要求品質は企業毎、製品毎によって大きく違う為、その品質を作り上げる為のノウハウや工具も企業毎に違いますが、全ての加工を人手でやるのではなく、自動化出来る所は自動で、自動化出来ない所だけ(本当に付加価値の高い工程)は人手で作業するという方法にシフトしていく必要があるのではないでしょうか? ロボット研磨システム導入と投資対効果 ロボット研磨システムを構築しようと思うと数千万円単位での投資が必要となります。 大ロット小品種の生産体制ならば、ロボット研磨システムも構築しやすいでしょうが、多品種小ロット生産の場合は、システムを構築する際に入念にデータを分析してシステムへの要件定義をしないといけません。 どの品種にどのくらい工数が掛かっているのか? どの品種の加工が最も難しいのか? 既存の作業はどのような作業をしているのか? どのサイズ範囲のワークを自動化対象とするのか? どのくらいの人的工数を削減していきたいのか? 一連の研磨の中でどの範囲を自動化させるのか? どのようなオペレーションでシステムを動かすのか? 段取り変えはどのようにするのか? 上記はあくまで例ですが、この様な分析をしつつ、システムの費用と得られる効果を算定していく事が、多品種対応型のシステム構築には非常に重要です。 しっかりとシステムに求める要件定義をして、効果を見通した中で自動化を進めていけば、必ず良いモノが出来あがると思います。 今後更に加速していく予測の労働人口の減少に伴い、3K作業の自動化、属人的作業の自動化などは人員採用に対しても必要不可欠と言えます。 20年先、30年先を見据えてひとつひとつ自動化を進めていきましょう。   おわりに 今回は、研磨ロボットによる研磨の自動化についてお伝えしましたが如何でしたか? 船井総研ではロボットやAIの導入に役立つダウンロードコンテンツをご用意しております。是非ご活用下さい。   ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html ■このような方におすすめ 多品種少量生産でロボット化が進まない TIG、MIG、レーザー溶接等、ロボット化できるか分からない 溶接工が不足しており3K業務で採用が難しい 職人、熟練作業に依存していて属人化している 溶接ロボット・自動化を相談できる所が見つからない 目次 多品種少量溶接ロボット導入の進め方 多品種少量溶接ロボットにおける具体的事例 補助金を活用した溶接ロボット導入成功事例 収録内容 「多品種少量生産対応の溶接ロボットを導入したい!」 「様々な種類の溶接をしているがロボットが活用できるのか知りたい」 「溶接工が不足しており若手も採用できず人手不足となっている」 「職人技術、熟練作業に依存しており技術継承ができていない」 「溶接ロボットを導入したいが何から始めてよいのか分からない」 本レポートでは、「多品種少量生産対応溶接ロボット」にテーマを絞り、具体的な導入方法と成功事例をご紹介いたします。 ■本セミナーで学べるポイント 【①】多品種少量溶接ロボット導入の進め方 ~業務分析、データ収集、作業分析、コスト効果分析、、、~ 【②】多品種少量溶接ロボット導入の具体的手法 ~溶接工程の作業分析を実施し本溶接とグラインダー仕上をロボット化~導入の具体的手法を徹底解説!! 【③】補助金を活用した多品種少量溶接ロボット導入成功事例 小ロット多品種板金加工業の溶接工程にロボット導入 7軸ロボットの導入により、人手に頼っていた溶接部門のロボット化を実現 車両用大型部品の溶接工程にロボット導入 大量生産にしか向かないロボットのイメージを払拭、はじめてのロボット導入に至る 曲面や立体形状アルミ部品のスタッド溶接加工作業をロボット化 スタートボタンを押すだけの簡単操作でパート社員でも操作が可能に 建設部品の外観部溶接工程にロボット導入 高度な技術をもった熟練作業者しかできない外観部溶接工程にロボットを導入 鍛造金型の硬化肉盛り工程へのロボット導入 ロボットオフラインソフトを用いて曲面ティーチング作業を数分で効率的に処理 特注大型門扉製造工程における溶接ロボットシステムの効率化 事前に分類した教示データの利用で、溶接スキルの有無にかかわらず誰でも操作可能に https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html 無料オンライン診断サービスのご案内 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html 研磨作業の加工方法 一括りに研磨と言っても様々な種類があります。鋳造品・機械加工品のバリ取りのような粗取り研磨から光沢面を作るミクロン単位の微細研磨まで幅広く研磨は存在しますが、加工方法については、どの研磨も基本的には砥石を回転させて被加工物に接触させ、その砥石を押し付ける力加減や砥石の番手(粗さ)を人が被加工物の表面状態を常時判断しながら職人技にて加工しているのがいまだに主流です。(摩擦研磨の場合) もちろん人の感覚でなければ仕上げ出来ない物があるのも事実ですが、実際には品質要求が高くない研磨作業でも、全て人手で作業をしている製造企業が圧倒的に多いです。 手研磨作業が人に与える負荷 板金加工業等で手研摩を行う際に良く使用する手工具の代表例として手持ち用のディスクグラインダーやサンダー等がありますが、これらの工具は非常に重く、かつ振動が発生します。 研磨作業を経験した事がある方は分かるでしょうが、このハンド式の研磨機を取り扱っている時、作業者は非常に緊張します。 重たくて高速回転している刃物をちゃんと持っていないと、ケガなどの災害を発生してしまったり、加工物に傷をつけてしまったりするので細心の注意を払って作業をしているので非常に緊張状態になります。 そして、加工中は削った金属や砥石のカスが周囲に飛散します。 飛び散った金属カスは高温になっている場合もあり、保護メガネや保護マスクの着用をしていないと失明等の災害が発生するリスクもあります。 バフのような柔らかい砥石と使う時や樹脂製品の研磨の場合には、研磨をする事で大量の粉塵が中に舞いますので、毎日作業される作業者の方は健康面を考慮して防塵マスクを着用して作業されています。まさにキツイ・キタナイ・キケンの3K作業です。 手研磨作業が企業に与える負荷 同時にある程度の表面状態を作りこむような場合には、非常に長時間の加工時間を有します。 例えば製函物で外観品質要求の高い製品には、溶接後にビードが見えない状態まで表面を研磨する且つ、全体が一定水準の表面状態に加工する必要があるので、砥石を数種類変更しながら研磨、更にバフと研磨材を用いて磨いていきます。 この様な研磨作業ではその商品を作る生産工程の中で最も研磨に時間が掛かっているような場合が多く見かけます。 製函物を製造する場合には、基本的にタレパンや複合機、ブレーキプレス、溶接、研磨の工程順で加工が進みますが、その一連の工程で最も時間が掛かるのが研磨工程の場合、生産原価でもある職人の工数がかさみ、利益率が極度に低くなってしまう事もあります。 特定の人しか作業出来ないので、欠員や退職等を理由に加工品質を維持出来なくなるというリスクもあります。 ロボット研磨システムの概況 上述したように手研摩作業には3K作業・ノウハウが必要・工数負担などの特長があり、このような作業こそ自動化を検討するべき必要があると思います。 直近では6軸垂直多関節ロボット用のグラインダやベルトサンダー・バフ等様々なハンドエフェクタが開発され販売されています。 研磨の自動化は中国や欧州が日本より進んでいる印象ですが、日本のロボットメーカーも研磨装置の開発と販売をしていますし、海外のロボット研磨ツールを取り扱う代理店も着々と増えてきており、ロボットを用いた研磨のテスト・評価をしてくれる代理店やロボットによる研磨システムを構築してくれるシステムインテグレータも増えてきております。 ロボット用研磨ツールの特長 ロボット用ハンドエフェクタとして販売されているロボット用研磨ツールですが、直近のツールはトルクセンサーが内蔵しており、倣い制御が可能です。 砥石は使用していると小さくなってきますので、ロボットできめられた軌道を往復するだけでは、研磨出来なくなってしまいますが、倣い機能がついている場合、いつも同じちから加減で加工をする事が可能です。砥石の種類も粗いディスクタイプ、ペーパーディスク、バフ等のラインナップがあり、ATC(オートツールチェンジャー)を活用して砥石自動交換する事も出来ます。 被加工物を固定してロボットをフルに動かして複雑な形状に対応する事も可能ですが、ポジショナ等外部回転軸を活用して被加工物を回転させながら研磨する事も可能です。 研磨についての要求品質は企業毎、製品毎によって大きく違う為、その品質を作り上げる為のノウハウや工具も企業毎に違いますが、全ての加工を人手でやるのではなく、自動化出来る所は自動で、自動化出来ない所だけ(本当に付加価値の高い工程)は人手で作業するという方法にシフトしていく必要があるのではないでしょうか? ロボット研磨システム導入と投資対効果 ロボット研磨システムを構築しようと思うと数千万円単位での投資が必要となります。 大ロット小品種の生産体制ならば、ロボット研磨システムも構築しやすいでしょうが、多品種小ロット生産の場合は、システムを構築する際に入念にデータを分析してシステムへの要件定義をしないといけません。 どの品種にどのくらい工数が掛かっているのか? どの品種の加工が最も難しいのか? 既存の作業はどのような作業をしているのか? どのサイズ範囲のワークを自動化対象とするのか? どのくらいの人的工数を削減していきたいのか? 一連の研磨の中でどの範囲を自動化させるのか? どのようなオペレーションでシステムを動かすのか? 段取り変えはどのようにするのか? 上記はあくまで例ですが、この様な分析をしつつ、システムの費用と得られる効果を算定していく事が、多品種対応型のシステム構築には非常に重要です。 しっかりとシステムに求める要件定義をして、効果を見通した中で自動化を進めていけば、必ず良いモノが出来あがると思います。 今後更に加速していく予測の労働人口の減少に伴い、3K作業の自動化、属人的作業の自動化などは人員採用に対しても必要不可欠と言えます。 20年先、30年先を見据えてひとつひとつ自動化を進めていきましょう。   おわりに 今回は、研磨ロボットによる研磨の自動化についてお伝えしましたが如何でしたか? 船井総研ではロボットやAIの導入に役立つダウンロードコンテンツをご用意しております。是非ご活用下さい。   ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html ■このような方におすすめ 多品種少量生産でロボット化が進まない TIG、MIG、レーザー溶接等、ロボット化できるか分からない 溶接工が不足しており3K業務で採用が難しい 職人、熟練作業に依存していて属人化している 溶接ロボット・自動化を相談できる所が見つからない 目次 多品種少量溶接ロボット導入の進め方 多品種少量溶接ロボットにおける具体的事例 補助金を活用した溶接ロボット導入成功事例 収録内容 「多品種少量生産対応の溶接ロボットを導入したい!」 「様々な種類の溶接をしているがロボットが活用できるのか知りたい」 「溶接工が不足しており若手も採用できず人手不足となっている」 「職人技術、熟練作業に依存しており技術継承ができていない」 「溶接ロボットを導入したいが何から始めてよいのか分からない」 本レポートでは、「多品種少量生産対応溶接ロボット」にテーマを絞り、具体的な導入方法と成功事例をご紹介いたします。 ■本セミナーで学べるポイント 【①】多品種少量溶接ロボット導入の進め方 ~業務分析、データ収集、作業分析、コスト効果分析、、、~ 【②】多品種少量溶接ロボット導入の具体的手法 ~溶接工程の作業分析を実施し本溶接とグラインダー仕上をロボット化~導入の具体的手法を徹底解説!! 【③】補助金を活用した多品種少量溶接ロボット導入成功事例 小ロット多品種板金加工業の溶接工程にロボット導入 7軸ロボットの導入により、人手に頼っていた溶接部門のロボット化を実現 車両用大型部品の溶接工程にロボット導入 大量生産にしか向かないロボットのイメージを払拭、はじめてのロボット導入に至る 曲面や立体形状アルミ部品のスタッド溶接加工作業をロボット化 スタートボタンを押すだけの簡単操作でパート社員でも操作が可能に 建設部品の外観部溶接工程にロボット導入 高度な技術をもった熟練作業者しかできない外観部溶接工程にロボットを導入 鍛造金型の硬化肉盛り工程へのロボット導入 ロボットオフラインソフトを用いて曲面ティーチング作業を数分で効率的に処理 特注大型門扉製造工程における溶接ロボットシステムの効率化 事前に分類した教示データの利用で、溶接スキルの有無にかかわらず誰でも操作可能に https://lp.funaisoken.co.jp/mt/smart-factory/dltext05-01-dl.html 無料オンライン診断サービスのご案内 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html

IT導入補助金とは?過去の採択率分析と採択率を上げる方法を解説!!

2021.10.13

1.IT導入補助金の採択率 2017年から経済産業省監修のもと始まったIT導入補助金ですが、ものづくり補助金や小規模事業者補助金と異なり、2020年までは採択率が公表されていませんでした。しかし、最近この点について改善され、2021年8月31日の第二次採択発表からは交付決定事業者情報が公表されています。 データをまとめると、1次・2次の通算採択率は58.4%であることがわかります。2021年10月12日現在では、上記データしか公表されていないため、回数を重ねるごとの採択率動向ははっきりとはわかりませんが、一般的には、回数を重ねるにつれて採択率は下がっているものと考えられております。 A B C D 1次採択率 55.5% 52.2% 58.8% 55.7% 2次採択率 55.2% 33.8% 60.7% 61.1% 3.採択率を上げるためには 現状のIT導入補助金制度では、採択結果発表後に採択や不採択の理由を提示いただけません。また、IT導入補助金事務局から正式に不採択理由の項目が公表されているわけでもありません。そのため、非公式な見解とはなりますが、不採択理由として最も上位に上がるのは一般的に「記入ミス」だと言われています。例えば、登記簿との不一致、複数項目内での言い回しの不一致などが挙げられます。 採択率を上げるためには、まず「表現含む表記が合っているか」を確認する必要があります。申請完了するとその後の修正は不可能であるため、提出前に複数人で確認することをおすすめします。 3.IT導入補助金について IT導入補助金は、事業者の方が自社の課題やニーズに合った「ITツール」を導入するために経費の一部を補助するものです。 この補助金によって事業者が導入できるITツールは、IT導入支援事業者によって登録されたものである必要があります。そのため、IT導入補助金申請の際は、規定されたツールの中から選ぶ形となります。 上記、IT導入補助金で規定された「ITツール」とは、業務効率化のために、新たに導入されるソフトウェア製品やクラウドサービスなどが対象となります。また、申請類型や補助額に応じて、「賃上げ目標の策定」が補助金交付採否においての加点または必須項目となっています。詳細な補助対象や補助率は申請種類によって異なる為、詳しくは公募要領をご確認ください。 ※A・B・C-1・C-2・D類型のうちいずれか1類型のみ申請可能。 ※1:「プロセス」とは、業務工程や業務種別のことです。 ※2:ツール要件(目的)について、詳しくは公募要領をご確認ください。 ※3:賃上げ目標について、詳しくは公募要領をご確認ください。 4.今後のIT導入補助金について 2021年10月12日現在は、第3次までが終了しました。次回は第4次分となり、申請締め切りは11月17日(水)17:00となっています。2021年年内は、12月中旬頃に〆切がある第5次分も想定されています。 ※引用、参考 申請件数及び交付決定件数(IT導入補助金公式HPより:https://www.it-hojo.jp/applicant/grant_decision.html) ツール一覧https://portal.it-hojo.jp/r2/search/?_ga=2.72602263.501118274.1633400428-1694576745.1618882991 公募要領https://www.it-hojo.jp/applicant/how-to-apply.html 最新のスケジュールhttps://www.it-hojo.jp/schedule/ おわりに 無料ダウンロードレポートのご案内 AIやデジタル技術を活用した「工場のAI・デジタル化」に関する事例を以下のレポート内でご紹介しております。 中堅・中小製造業経営者様向け“AIを活用した業務効率化“最新事例解説レポート   上記の事例レポートは無料でダウンロードいただくことができます。 ご興味のある方は、是非チェックしてみてください。 このような方におすすめ 製造業のAI活用最新事例を知りたい 属人業務、職人業務を標準化したい 既存業務を省力化、省人化したい 目次 船井総研セミナー参加企業様からのご要望が多い「AIを活用した業務効率化」に関する最新事例を徹底解説! ポイント①:類似案件をAIを使って簡単検索営業・生産計画立案の業務効率 ポイント②:生産計画立案を自動最適化・脱属人化 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext08-01-dl.html 無料オンライン診断サービスのご案内 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html 1.IT導入補助金の採択率 2017年から経済産業省監修のもと始まったIT導入補助金ですが、ものづくり補助金や小規模事業者補助金と異なり、2020年までは採択率が公表されていませんでした。しかし、最近この点について改善され、2021年8月31日の第二次採択発表からは交付決定事業者情報が公表されています。 データをまとめると、1次・2次の通算採択率は58.4%であることがわかります。2021年10月12日現在では、上記データしか公表されていないため、回数を重ねるごとの採択率動向ははっきりとはわかりませんが、一般的には、回数を重ねるにつれて採択率は下がっているものと考えられております。 A B C D 1次採択率 55.5% 52.2% 58.8% 55.7% 2次採択率 55.2% 33.8% 60.7% 61.1% 3.採択率を上げるためには 現状のIT導入補助金制度では、採択結果発表後に採択や不採択の理由を提示いただけません。また、IT導入補助金事務局から正式に不採択理由の項目が公表されているわけでもありません。そのため、非公式な見解とはなりますが、不採択理由として最も上位に上がるのは一般的に「記入ミス」だと言われています。例えば、登記簿との不一致、複数項目内での言い回しの不一致などが挙げられます。 採択率を上げるためには、まず「表現含む表記が合っているか」を確認する必要があります。申請完了するとその後の修正は不可能であるため、提出前に複数人で確認することをおすすめします。 3.IT導入補助金について IT導入補助金は、事業者の方が自社の課題やニーズに合った「ITツール」を導入するために経費の一部を補助するものです。 この補助金によって事業者が導入できるITツールは、IT導入支援事業者によって登録されたものである必要があります。そのため、IT導入補助金申請の際は、規定されたツールの中から選ぶ形となります。 上記、IT導入補助金で規定された「ITツール」とは、業務効率化のために、新たに導入されるソフトウェア製品やクラウドサービスなどが対象となります。また、申請類型や補助額に応じて、「賃上げ目標の策定」が補助金交付採否においての加点または必須項目となっています。詳細な補助対象や補助率は申請種類によって異なる為、詳しくは公募要領をご確認ください。 ※A・B・C-1・C-2・D類型のうちいずれか1類型のみ申請可能。 ※1:「プロセス」とは、業務工程や業務種別のことです。 ※2:ツール要件(目的)について、詳しくは公募要領をご確認ください。 ※3:賃上げ目標について、詳しくは公募要領をご確認ください。 4.今後のIT導入補助金について 2021年10月12日現在は、第3次までが終了しました。次回は第4次分となり、申請締め切りは11月17日(水)17:00となっています。2021年年内は、12月中旬頃に〆切がある第5次分も想定されています。 ※引用、参考 申請件数及び交付決定件数(IT導入補助金公式HPより:https://www.it-hojo.jp/applicant/grant_decision.html) ツール一覧https://portal.it-hojo.jp/r2/search/?_ga=2.72602263.501118274.1633400428-1694576745.1618882991 公募要領https://www.it-hojo.jp/applicant/how-to-apply.html 最新のスケジュールhttps://www.it-hojo.jp/schedule/ おわりに 無料ダウンロードレポートのご案内 AIやデジタル技術を活用した「工場のAI・デジタル化」に関する事例を以下のレポート内でご紹介しております。 中堅・中小製造業経営者様向け“AIを活用した業務効率化“最新事例解説レポート   上記の事例レポートは無料でダウンロードいただくことができます。 ご興味のある方は、是非チェックしてみてください。 このような方におすすめ 製造業のAI活用最新事例を知りたい 属人業務、職人業務を標準化したい 既存業務を省力化、省人化したい 目次 船井総研セミナー参加企業様からのご要望が多い「AIを活用した業務効率化」に関する最新事例を徹底解説! ポイント①:類似案件をAIを使って簡単検索営業・生産計画立案の業務効率 ポイント②:生産計画立案を自動最適化・脱属人化 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext08-01-dl.html 無料オンライン診断サービスのご案内 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html

従業員10名以下、未経験でも最短半年でロボット導入を成功させる方法!

2021.10.06

今回は、「従業員10名以下、未経験でも最短半年でロボット導入を成功させる方法!」というテーマで新たにDLレポートをご用意しましたので、その内容について簡単にご紹介致します。 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_00145 1.ロボット導入が失敗する3つの理由 ①自社でティーチングが出来ない 従来の産業用ロボットにおけるティーチング作業は非常に専門性が高く、ティーチング作業を実務レベルまで習得するには膨大な時間がかかります。 結果、ロボットを導入したはいいものの、若干の不具合修正や品種追加の度にティーチングを外注することになりコストがかさむことになります。 トラブル時に操作方法が分からず復旧に時間がかかり、そのうち使われなくなってしまう、というパターンが見受けられます。 ②ロボット以外の周辺装置にコストがかかる ロボットシステムを構成する際に必要となるのがワークストッカーです。ロボットにワークを確実に持たせるために整然とワークを整列し供給してあげる必要があります。 ワークの位置が決まらない(ストッカーで矯正が難しい)場合やワークを整列する工数をかけられない場合は各種センサーや画像認識装置を用いることになり莫大なコストがかかります。 ワーク供給の対象設備(加工設備)との電気的な連携も必要となり技術的な課題もあります。 ③ロボットを設置するスペースが無い ただでさえ手狭な工場内に大掛かりなロボットシステムを設置することはスペース的に困難である場合があります。 設置できたとしてもそのロボットシステムの対象となっていないワークを加工する際にはロボットが邪魔になってしまい作業者による手加工が出来ない、ロボットでの加工でも段替えや定期メンテナンス作業が困難になる、等の問題が発生します。 2.初めてのロボットはこれを使え!! では、具体的に初めて導入するロボットはどのような物を使えば良いでしょうか? 上記①~③の失敗する理由を逆に考えると以下のことが見えてきます。 まず、①自社でティーチングが出来ない、という項目についてです。 こちらは逆に言えば「誰でも、すぐに、ティーチングできる」ロボットであれば失敗しない、ということになります。 「誰でも、すぐに、ティーチングできる」を技術に置き換えると「ダイレクトティーチング」が挙げれます。ロボットを直接持ってティーチングできるため、高度な専門知識が無くてもティーチングが可能です。 二つ目の②ロボット以外の周辺装置にコストがかかる、については 「周辺装置が少なくて済む」ロボットが必要ということになります。 周辺装置を少なくするために必要なのがカメラ内蔵型のロボットです。 標準でカメラを内蔵しているため、後付けカメラのような複雑な設定が不要となり、カメラによりワークの位置判別が可能となるため、先に挙げたようなワークストッカーも最低限のストッカーで済ませることが出来るため周辺装置を最小限に抑えられます。 三つ目の③ロボットを設置するスペースが無い、については 「省スペース、かつ使わないときは移動できる」ロボットが必要ということになります。 省スペースという点では安全柵が不要な協働ロボットになるでしょう。 ここで問題となるのが、使わないときは移動できる、という点です。 通常のロボットは一度設置位置を決めたら、その位置を基準にティーチングを行うため仮に使わないときにどかす(移動する)というアクションを起こした場合には、再度設置する際に設置位置のズレを修正する必要があるため、そのたびにティーチングをしなければならない、という手間が発生します。 これについては前述したカメラ内蔵型のロボットの付加機能として使える3D位置補正機能を使用することで解決可能です。 3D位置補正機能を使うと、ロボットが自分の位置を3次元的に認識できるため、ズレによるティーチングの修正が不要となり、気軽にロボットを移動させることができます。 3.具体的活用事例 ここまでご紹介した失敗しないロボット選び、ですが具体的な活用事例については、以下のダウンロードレポートをご確認頂きたいと思います。 無料ダウンロードとなっておりますので是非ご活用下さい。また、オンラインでの無料相談も行っております。 ダウンロードフォームよりお申し込み頂けますのでそちらもご活用頂けますと幸いです。 最短半年でロボット導入を成功させる方法 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_00145 4.無料オンライン診断サービスのご案内 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html いつも当メルマガ・コラムをご愛読いただきありがとうございます。 今回は、「従業員10名以下、未経験でも最短半年でロボット導入を成功させる方法!」というテーマで新たにDLレポートをご用意しましたので、その内容について簡単にご紹介致します。 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_00145 1.ロボット導入が失敗する3つの理由 ①自社でティーチングが出来ない 従来の産業用ロボットにおけるティーチング作業は非常に専門性が高く、ティーチング作業を実務レベルまで習得するには膨大な時間がかかります。 結果、ロボットを導入したはいいものの、若干の不具合修正や品種追加の度にティーチングを外注することになりコストがかさむことになります。 トラブル時に操作方法が分からず復旧に時間がかかり、そのうち使われなくなってしまう、というパターンが見受けられます。 ②ロボット以外の周辺装置にコストがかかる ロボットシステムを構成する際に必要となるのがワークストッカーです。ロボットにワークを確実に持たせるために整然とワークを整列し供給してあげる必要があります。 ワークの位置が決まらない(ストッカーで矯正が難しい)場合やワークを整列する工数をかけられない場合は各種センサーや画像認識装置を用いることになり莫大なコストがかかります。 ワーク供給の対象設備(加工設備)との電気的な連携も必要となり技術的な課題もあります。 ③ロボットを設置するスペースが無い ただでさえ手狭な工場内に大掛かりなロボットシステムを設置することはスペース的に困難である場合があります。 設置できたとしてもそのロボットシステムの対象となっていないワークを加工する際にはロボットが邪魔になってしまい作業者による手加工が出来ない、ロボットでの加工でも段替えや定期メンテナンス作業が困難になる、等の問題が発生します。 2.初めてのロボットはこれを使え!! では、具体的に初めて導入するロボットはどのような物を使えば良いでしょうか? 上記①~③の失敗する理由を逆に考えると以下のことが見えてきます。 まず、①自社でティーチングが出来ない、という項目についてです。 こちらは逆に言えば「誰でも、すぐに、ティーチングできる」ロボットであれば失敗しない、ということになります。 「誰でも、すぐに、ティーチングできる」を技術に置き換えると「ダイレクトティーチング」が挙げれます。ロボットを直接持ってティーチングできるため、高度な専門知識が無くてもティーチングが可能です。 二つ目の②ロボット以外の周辺装置にコストがかかる、については 「周辺装置が少なくて済む」ロボットが必要ということになります。 周辺装置を少なくするために必要なのがカメラ内蔵型のロボットです。 標準でカメラを内蔵しているため、後付けカメラのような複雑な設定が不要となり、カメラによりワークの位置判別が可能となるため、先に挙げたようなワークストッカーも最低限のストッカーで済ませることが出来るため周辺装置を最小限に抑えられます。 三つ目の③ロボットを設置するスペースが無い、については 「省スペース、かつ使わないときは移動できる」ロボットが必要ということになります。 省スペースという点では安全柵が不要な協働ロボットになるでしょう。 ここで問題となるのが、使わないときは移動できる、という点です。 通常のロボットは一度設置位置を決めたら、その位置を基準にティーチングを行うため仮に使わないときにどかす(移動する)というアクションを起こした場合には、再度設置する際に設置位置のズレを修正する必要があるため、そのたびにティーチングをしなければならない、という手間が発生します。 これについては前述したカメラ内蔵型のロボットの付加機能として使える3D位置補正機能を使用することで解決可能です。 3D位置補正機能を使うと、ロボットが自分の位置を3次元的に認識できるため、ズレによるティーチングの修正が不要となり、気軽にロボットを移動させることができます。 3.具体的活用事例 ここまでご紹介した失敗しないロボット選び、ですが具体的な活用事例については、以下のダウンロードレポートをご確認頂きたいと思います。 無料ダウンロードとなっておりますので是非ご活用下さい。また、オンラインでの無料相談も行っております。 ダウンロードフォームよりお申し込み頂けますのでそちらもご活用頂けますと幸いです。 最短半年でロボット導入を成功させる方法 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_00145 4.無料オンライン診断サービスのご案内 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html

中小・零細製造業のデジタル化【基幹システム導入_システム導入プロジェクト前編】

2021.09.30

1.はじめに 本コラムでは、情報システムの専門家、いわゆる情シス部隊が存在しない企業様において、新たに基幹システム(生産管理、工程管理、会計管理、購買管理といった複数の機能群を有し、一つのデータベースで統合したシステム、ERPともいう)を導入する場合の検討から導入、活用までの流れについて、数回のシリーズに分けてお届けさせていただきます。 自社のIT関連の情報を全て把握している人が存在しない場合、新たにシステム導入をするにあたってどのようにハンドリングしてよいかがわからず、ベンダーにまかせっきりになってしまい、導入後も、システムの全体像を把握できていない場合があります。そのような状態では、導入したシステムを活用した業務改善を進めることもできず、事業を発展させる機会を逸することになります。そこで、導入を考え始めたときからどのような手順で進めれば導入後もシステムを活用できる環境を作ることが出来るかについて提案させていただいているのが本コラムシリーズです。是非、バックナンバーも参考にしていただければ幸いです。 第5回の今回は、システム導入プロジェクトを進める上でのポイントを解説いたします。 2.前回までの振り返りと本コラム内容について 前回までのコラムでは、検討開始の初動から仕様検討をし、システムベンダーを決める際の検討ポイントまでを解説をしました。ベンダーが決定すると、詳細な業務分析・要件定義・システム開発・システム導入・運用開始と、いよいよ実際に使うといったゴールに向けてプロジェクトがスタートします。 本コラムでは、ベンダーとプロジェクトを進めていく上でのポイントについて解説いたします。ここでいうシステムベンダーとは、「システムを提供、導入を支援する」企業を指しています。 3.システム導入プロジェクトの進め方 自社の必要要件を満たせそうなベンダーを選択しました。次のステップは、そのベンダーと一緒に新システムを現場に定着させ、活用するまでプロジェクトとして動かすことが必要になります。システムは、機械設備とは異なり、その中身(プログラム)を見ることは出来ません。そのため、新しいシステムには苦手意識を持ってしまい、現場からの理解を得られることが難しいことがあります。その打開策として、提案したいことは、(1)新システム導入を全社に周知すること、(2)新システム導入の意義を経営者自身で説明すること、(3)ベンダーに一任せずに、自社で積極的に関与することです。各項目について、解説させていただきます。 (1)システム導入を全社に周知することについて解説します。 導入するシステムによって、その規模、影響を受ける部署・業務は色々ありますが、その規模に寄らず、新システムの概要といつ頃導入される予定であることは、全社に共有し、その導入時期前後、特に導入後は今間でとの業務内容に変化が生じる可能性があることを認識しておいてもらうことが目的です。こうすることで、全社的なイベントであることを認識してもらい、直接関係無い部署・業務でも何かしらの影響がでる可能性があることを意識してもらうことが出来ます。また、一見関係無いと思っていた部署や社員から問い合わせが来て、見落としていた要件に気づくこともありますので、システム導入が決定したら、早めに全社に周知するようにしましょう。 (2)新システム導入の意義を経営者自身で説明することについて解説します。 これは、(1)に通ずるところがありますが、経営者が新システム導入の意義や思いについて語ることで、担当部署・担当者のみが単独で進めているプロジェクトでなく、全社的なプロジェクトであることを社員に認識してもらえます。システムを導入・変更することは、会社の仕組み自体を変更させることです。実際にそのシステムを使う社員の方々にとっては、今までの業務から変化することになるため、基本的には、ネガティブな反応が多くなりがちです。その反応を抑制するためにも、経営者が重要性を発信をすることで、自分の所属する会社にとって必要な変化であることを理解してもらうことが重要です。 (3)ベンダーに一任せず、自社で積極的に関与することについて解説します。 基本的には、ベンダー側が旗を振って、プロジェクトを進めることになります。しかし、ここでベンダーにまかせっきりにせず、自社からもわからないことは質問するや、追加で出てきた要望については、積極的に伝えるようにしていきましょう。特に理解できないこと・進め方や決定した事項に納得がいかないことは、遠慮せずに伝えましょう。自身の発言で、計画の進捗が遅れる・追加開発が発生し、コストが増大する可能性が頭をよぎると、思ったことを言えなくなります。そこで、引いてしまうと、後々それが問題になって、確認しておけばよかったと後悔することも少なくありません。また、自身が疑問に思ったことが、後から別の社員に質問され、結局、ベンダーに問い合わせる必要が出てくることもあり得ます。 4.おわりに 以上のポイントを意識してプロジェクトに臨んでいただければ、導入したシステムが使い物にならなかったといった事態は回避できると考えています。 中小・零細製造業のデジタル化【基幹システム導入_システム導入プロジェクト前編】の解説は以上です。最後までお読みいただきありがとうございました。 AIやデジタル技術を活用した「工場のAI・デジタル化」に関する事例を以下のレポート内でご紹介しております。 中堅・中小製造業 経営者様向け “工場のAI・デジタル化”最新事例解説レポート   上記の事例レポートは無料でダウンロードいただくことができます。 ご興味のある方は、是非チェックしてみてください。 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/download/201208/ 無料オンライン診断サービスのご案内 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html 1.はじめに 本コラムでは、情報システムの専門家、いわゆる情シス部隊が存在しない企業様において、新たに基幹システム(生産管理、工程管理、会計管理、購買管理といった複数の機能群を有し、一つのデータベースで統合したシステム、ERPともいう)を導入する場合の検討から導入、活用までの流れについて、数回のシリーズに分けてお届けさせていただきます。 自社のIT関連の情報を全て把握している人が存在しない場合、新たにシステム導入をするにあたってどのようにハンドリングしてよいかがわからず、ベンダーにまかせっきりになってしまい、導入後も、システムの全体像を把握できていない場合があります。そのような状態では、導入したシステムを活用した業務改善を進めることもできず、事業を発展させる機会を逸することになります。そこで、導入を考え始めたときからどのような手順で進めれば導入後もシステムを活用できる環境を作ることが出来るかについて提案させていただいているのが本コラムシリーズです。是非、バックナンバーも参考にしていただければ幸いです。 第5回の今回は、システム導入プロジェクトを進める上でのポイントを解説いたします。 2.前回までの振り返りと本コラム内容について 前回までのコラムでは、検討開始の初動から仕様検討をし、システムベンダーを決める際の検討ポイントまでを解説をしました。ベンダーが決定すると、詳細な業務分析・要件定義・システム開発・システム導入・運用開始と、いよいよ実際に使うといったゴールに向けてプロジェクトがスタートします。 本コラムでは、ベンダーとプロジェクトを進めていく上でのポイントについて解説いたします。ここでいうシステムベンダーとは、「システムを提供、導入を支援する」企業を指しています。 3.システム導入プロジェクトの進め方 自社の必要要件を満たせそうなベンダーを選択しました。次のステップは、そのベンダーと一緒に新システムを現場に定着させ、活用するまでプロジェクトとして動かすことが必要になります。システムは、機械設備とは異なり、その中身(プログラム)を見ることは出来ません。そのため、新しいシステムには苦手意識を持ってしまい、現場からの理解を得られることが難しいことがあります。その打開策として、提案したいことは、(1)新システム導入を全社に周知すること、(2)新システム導入の意義を経営者自身で説明すること、(3)ベンダーに一任せずに、自社で積極的に関与することです。各項目について、解説させていただきます。 (1)システム導入を全社に周知することについて解説します。 導入するシステムによって、その規模、影響を受ける部署・業務は色々ありますが、その規模に寄らず、新システムの概要といつ頃導入される予定であることは、全社に共有し、その導入時期前後、特に導入後は今間でとの業務内容に変化が生じる可能性があることを認識しておいてもらうことが目的です。こうすることで、全社的なイベントであることを認識してもらい、直接関係無い部署・業務でも何かしらの影響がでる可能性があることを意識してもらうことが出来ます。また、一見関係無いと思っていた部署や社員から問い合わせが来て、見落としていた要件に気づくこともありますので、システム導入が決定したら、早めに全社に周知するようにしましょう。 (2)新システム導入の意義を経営者自身で説明することについて解説します。 これは、(1)に通ずるところがありますが、経営者が新システム導入の意義や思いについて語ることで、担当部署・担当者のみが単独で進めているプロジェクトでなく、全社的なプロジェクトであることを社員に認識してもらえます。システムを導入・変更することは、会社の仕組み自体を変更させることです。実際にそのシステムを使う社員の方々にとっては、今までの業務から変化することになるため、基本的には、ネガティブな反応が多くなりがちです。その反応を抑制するためにも、経営者が重要性を発信をすることで、自分の所属する会社にとって必要な変化であることを理解してもらうことが重要です。 (3)ベンダーに一任せず、自社で積極的に関与することについて解説します。 基本的には、ベンダー側が旗を振って、プロジェクトを進めることになります。しかし、ここでベンダーにまかせっきりにせず、自社からもわからないことは質問するや、追加で出てきた要望については、積極的に伝えるようにしていきましょう。特に理解できないこと・進め方や決定した事項に納得がいかないことは、遠慮せずに伝えましょう。自身の発言で、計画の進捗が遅れる・追加開発が発生し、コストが増大する可能性が頭をよぎると、思ったことを言えなくなります。そこで、引いてしまうと、後々それが問題になって、確認しておけばよかったと後悔することも少なくありません。また、自身が疑問に思ったことが、後から別の社員に質問され、結局、ベンダーに問い合わせる必要が出てくることもあり得ます。 4.おわりに 以上のポイントを意識してプロジェクトに臨んでいただければ、導入したシステムが使い物にならなかったといった事態は回避できると考えています。 中小・零細製造業のデジタル化【基幹システム導入_システム導入プロジェクト前編】の解説は以上です。最後までお読みいただきありがとうございました。 AIやデジタル技術を活用した「工場のAI・デジタル化」に関する事例を以下のレポート内でご紹介しております。 中堅・中小製造業 経営者様向け “工場のAI・デジタル化”最新事例解説レポート   上記の事例レポートは無料でダウンロードいただくことができます。 ご興味のある方は、是非チェックしてみてください。 ▼事例レポート無料ダウンロード お申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/download/201208/ 無料オンライン診断サービスのご案内 専門コンサルタントが無料でAI活用について診断致します! AI活用したいが初めてでやり方が分からない・・・ データドリブン経営を実践したい・・・ 営業、見積もり業務が属人化している・・・ 生産管理に工数がかかっている・・・ 現場の進捗が見えない・・・ 他社の導入事例の詳細について聞きたい AI活用について相談できる所が見つからない・・・ ↓↓お申し込みはこちらから↓↓ https://lp.funaisoken.co.jp/mt/smart-factory/counsel.html