AI CONSULTING COLUMN AI・デジタル・IoTコンサルティングコラム

専門コンサルタントが執筆するAI・ロボットコラム
最新のAI・ロボット技術に精通したコンサルタントによる定期コラム

製造業の人材不足とデジタル化

2023.07.19

1.製造業の求人に応募が少ない理由 厚生労働省の雇用関係指標で製造業が該当する「生産工程の職業」(常用・パート含)を確認すると、2021年の月間有効求職者数は全体で152万人(男性:101万人、女性:51万人)、就職件数は全体で14万件となっており、製造業の求職者や就職者は多数存在しております。つまり、製造業の求人で人材が集まりにくい理由のひとつに、求職者数以上に求人数が多いからだと考えられます。 同じく2021年「生産工程の職業」の月間有効求人数を確認すると258万人で、比較すると求職者数が106万人不足することから、製造業の求人は求人側にとって非常に難しい状態であるとわかります。引用:厚生労働省 雇用関係指標 業界全体から見ても製造業は特に人手不足が深刻化しており、この状況は今後悪化の一途を辿ると言われています。しかし、定着率、求人への応募者数がともに低下している原因は意外にも明白です。 ■ 労働人口の減少 ■ 労働環境の悪化 ■ 3Kイメージの定着 少子高齢化による労働人口の減少はもちろんですが、このほかの大きな理由として3Kのイメージがあることが挙げられます。つまり「きつい」「汚い」「危険」という労働環境のイメージが定着しているために製造業を希望する人材が減少、求人を出しても求職者が集まらないのです。 2.製造業を魅力的にするためにできることとは? 製造業を魅力的にするために、ここでは以下の2つのことについて説明します。 ■ 労働環境を整備する ■ デジタルツールを導入する 要は3Kイメージの払拭に繋がる対策を行い、そのことを広めていくことで応募者の増加が期待できるようになります。 <労働環境を整備する> 製造業で人手不足に陥る大きな要因である「きつい」「汚い」「危険」という労働環境の改善を図り、求職者に「変わった」ことをアピールできれば応募者増加に期待が持てるようになります。わかりやすい内容では以下となります。 ■ 短時間労働を導入する ■ 残業の削減 ■ 深夜労働の削減 ■ 職務内容に対して適正な給与かどうかの見直し これらはどれも「やりたいことだか出来ないこと」だと思います。しかし、これまでの製造業の常識を盾にしては、いつまでも求職者からの応募は来ません。求職者の考え方が変わることは絶対にないのです。つまりは、ワークライフバランスの方に軸足を移すことが出来るかが重要になります。  <デジタルツールを導入する> 当然のことですが、誰でも意義のある仕事をしたいと思っています。右から左に流すような仕事を誰も積極的にはやりたくないのです。要は意味のないアナログ作業が多い職場は求職者にとって魅力ある職場ではありません。ロボットやIoTやAIツールを導入して定型業務や軽作業、単純作業などのインコア業務を自動化することで、職場としても魅力ができ、現場の作業効率も当然上げることが出来ます。デジタル化により会社の魅力も上がり、既存社員の作業負担が軽減されれば3Kのうち「きつい」と「危険」が減ります。 デジタルツールにより作業が自動化できれば、コア業務に人手と時間を割けるようになるため、売上アップにも期待が持てるでしょう。 3.人材不足とデジタル化 全国各地どこの製造現場でも人手不足の話を聞きます。人が多く集まる都市でも人材不足の話を聞きます。ベテラン(職人)の退職、製造業の人気低迷、期待人材の途中退職者が あいまって、人材不足に拍車がかかっています。企業にとっては、これはどれも痛いことですが、「期待人材の途中退職者」が一番きついことだと私は思っています。製造業の現場はいわゆる一人前になるまでには長い時間がかかります。1年程度では必要なレベルまでは簡単には到達してくれません。「優秀な人材ほどよく辞める」とはよく聞くことですが、時間をかけて育てた人材が離れていくのは、企業にとって影響は小さくはないでしょう。 では、どうすればよいのでしょうか。最近の市場動向が考えるに「時間をかけて人を育てる=職人を育てる」ということ自体がそもそも難しい時代になっているのではないでしょうか。 いくら情熱をかけて育てても、その人の都合で退職してしまえば、それまでかけた時間が全くの無駄になってしまいます。職人を育てるのではなく、今いるベテラン(職人)のスキルをデータ(デジタル化)にして、企業の資産として持ち、誰もがそのスキルを使えるようにしておくことが、今後製造業に必要になってくることだと思います。それには、ロボット、AIなどにスキルをドンドン蓄積していくことが大事です。 ロボットは、職人のような動きを半永久的に模倣することができます。AIは職人やベテランが導きだすような判断を、瞬時に安定して導き出すことができます。 ロボットやAIは高額になる場合が多いです。費用対効果も大事ですが、スキルの資産化という観点から投資を検討することが今後必要になってくるのではないでしょうか。今いるスキルや技能はその人がいるうちにしか、データ化(蓄積)できません。退職してしまっては、その方が優秀であればあるほど、同じレベルで品質を担保するのが難しくなってしまいます。「長年かけて築き上げた技術がその人だけのモノにならないよう」に、スキルの資産化を検討されてはいかがでしょうか。   ■関連するセミナーのご案内 製造業の為のAI・IoT活用戦略!経営者セミナー https://www.funaisoken.co.jp/seminar/102603 職人技術に依存している製造現場でAI化・IoT化・ロボット化・デジタル化できる取組事例が学べる! ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/07 (木) 13:00~15:00 2023/09/12 (火) 13:00~15:00 2023/09/14 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 AI・IoT取組事例講座編 「全国各地で見られる製造業でのAI・IoT取組事例」 AI・IoT活用戦略講座編 「製造業経営者が取り組むべきAI・IoT活用戦略」 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/102603   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 https://www.funaisoken.co.jp/dl-contents/jy-ai_S045 1.製造業の求人に応募が少ない理由 厚生労働省の雇用関係指標で製造業が該当する「生産工程の職業」(常用・パート含)を確認すると、2021年の月間有効求職者数は全体で152万人(男性:101万人、女性:51万人)、就職件数は全体で14万件となっており、製造業の求職者や就職者は多数存在しております。つまり、製造業の求人で人材が集まりにくい理由のひとつに、求職者数以上に求人数が多いからだと考えられます。 同じく2021年「生産工程の職業」の月間有効求人数を確認すると258万人で、比較すると求職者数が106万人不足することから、製造業の求人は求人側にとって非常に難しい状態であるとわかります。引用:厚生労働省 雇用関係指標 業界全体から見ても製造業は特に人手不足が深刻化しており、この状況は今後悪化の一途を辿ると言われています。しかし、定着率、求人への応募者数がともに低下している原因は意外にも明白です。 ■ 労働人口の減少 ■ 労働環境の悪化 ■ 3Kイメージの定着 少子高齢化による労働人口の減少はもちろんですが、このほかの大きな理由として3Kのイメージがあることが挙げられます。つまり「きつい」「汚い」「危険」という労働環境のイメージが定着しているために製造業を希望する人材が減少、求人を出しても求職者が集まらないのです。 2.製造業を魅力的にするためにできることとは? 製造業を魅力的にするために、ここでは以下の2つのことについて説明します。 ■ 労働環境を整備する ■ デジタルツールを導入する 要は3Kイメージの払拭に繋がる対策を行い、そのことを広めていくことで応募者の増加が期待できるようになります。 <労働環境を整備する> 製造業で人手不足に陥る大きな要因である「きつい」「汚い」「危険」という労働環境の改善を図り、求職者に「変わった」ことをアピールできれば応募者増加に期待が持てるようになります。わかりやすい内容では以下となります。 ■ 短時間労働を導入する ■ 残業の削減 ■ 深夜労働の削減 ■ 職務内容に対して適正な給与かどうかの見直し これらはどれも「やりたいことだか出来ないこと」だと思います。しかし、これまでの製造業の常識を盾にしては、いつまでも求職者からの応募は来ません。求職者の考え方が変わることは絶対にないのです。つまりは、ワークライフバランスの方に軸足を移すことが出来るかが重要になります。  <デジタルツールを導入する> 当然のことですが、誰でも意義のある仕事をしたいと思っています。右から左に流すような仕事を誰も積極的にはやりたくないのです。要は意味のないアナログ作業が多い職場は求職者にとって魅力ある職場ではありません。ロボットやIoTやAIツールを導入して定型業務や軽作業、単純作業などのインコア業務を自動化することで、職場としても魅力ができ、現場の作業効率も当然上げることが出来ます。デジタル化により会社の魅力も上がり、既存社員の作業負担が軽減されれば3Kのうち「きつい」と「危険」が減ります。 デジタルツールにより作業が自動化できれば、コア業務に人手と時間を割けるようになるため、売上アップにも期待が持てるでしょう。 3.人材不足とデジタル化 全国各地どこの製造現場でも人手不足の話を聞きます。人が多く集まる都市でも人材不足の話を聞きます。ベテラン(職人)の退職、製造業の人気低迷、期待人材の途中退職者が あいまって、人材不足に拍車がかかっています。企業にとっては、これはどれも痛いことですが、「期待人材の途中退職者」が一番きついことだと私は思っています。製造業の現場はいわゆる一人前になるまでには長い時間がかかります。1年程度では必要なレベルまでは簡単には到達してくれません。「優秀な人材ほどよく辞める」とはよく聞くことですが、時間をかけて育てた人材が離れていくのは、企業にとって影響は小さくはないでしょう。 では、どうすればよいのでしょうか。最近の市場動向が考えるに「時間をかけて人を育てる=職人を育てる」ということ自体がそもそも難しい時代になっているのではないでしょうか。 いくら情熱をかけて育てても、その人の都合で退職してしまえば、それまでかけた時間が全くの無駄になってしまいます。職人を育てるのではなく、今いるベテラン(職人)のスキルをデータ(デジタル化)にして、企業の資産として持ち、誰もがそのスキルを使えるようにしておくことが、今後製造業に必要になってくることだと思います。それには、ロボット、AIなどにスキルをドンドン蓄積していくことが大事です。 ロボットは、職人のような動きを半永久的に模倣することができます。AIは職人やベテランが導きだすような判断を、瞬時に安定して導き出すことができます。 ロボットやAIは高額になる場合が多いです。費用対効果も大事ですが、スキルの資産化という観点から投資を検討することが今後必要になってくるのではないでしょうか。今いるスキルや技能はその人がいるうちにしか、データ化(蓄積)できません。退職してしまっては、その方が優秀であればあるほど、同じレベルで品質を担保するのが難しくなってしまいます。「長年かけて築き上げた技術がその人だけのモノにならないよう」に、スキルの資産化を検討されてはいかがでしょうか。   ■関連するセミナーのご案内 製造業の為のAI・IoT活用戦略!経営者セミナー https://www.funaisoken.co.jp/seminar/102603 職人技術に依存している製造現場でAI化・IoT化・ロボット化・デジタル化できる取組事例が学べる! ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/07 (木) 13:00~15:00 2023/09/12 (火) 13:00~15:00 2023/09/14 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 AI・IoT取組事例講座編 「全国各地で見られる製造業でのAI・IoT取組事例」 AI・IoT活用戦略講座編 「製造業経営者が取り組むべきAI・IoT活用戦略」 セミナー詳細・申込はこちらから⇒ https://www.funaisoken.co.jp/seminar/102603   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 https://www.funaisoken.co.jp/dl-contents/jy-ai_S045

製造業のIoT化の手順

2023.07.04

本コラムでは、中堅・中小製造業の企業におけるDX・IoT活用について、まずはどこからどの様にDX・IoTを導入していくべきか、わかりやすく説明させていただきます。 1.はじめに 前回のコラムで具体的にDXやIoT、AIを活用した業務の革新や改善を実施したいと考えたとき、まず『製造現場』へ導入すべきと提案しました。 なぜなら、『製造現場』の革新や改善が会社の売上や利益の向上に最も直結する業務だからです。 製造業は『モノを作る企業』です。 IoTを活用して製造現場を管理するには、まずは製造現場をIoT化する必要があります。 IoTを構成する主な要素は3つです。 デバイス:各種データを取得 ネットワーク:インターネットや社内システムへ接続 プラットフォーム・アプリケーション:データを蓄積・分析 そこで、今回は、その中の“デバイス:各種データを取得”に関して具体的な手順を説明させていただきます。 2.製造工程のIoT化手順 ①IoTセンサー選定 以下に一般的なセンサーの種類とその用途をいくつか挙げます。 温度センサー 製造プロセスや機械の温度監視に使用されます。異常な温度上昇や変動を検知し、製造工程での問題を早期に発見します。 圧力センサー 液体やガスの圧力を監視するために使用されます。圧力の変動や漏れを検知し、安全性や品質の向上に貢献します。 加速度センサー 機械や製品の振動や衝撃を測定するために使用されます。機械の異常振動や製品の取り扱いミスを検知し、トラブルを防ぎます。 光センサー 製品の位置検出、透明度の測定、光の強度の監視など、光に関する情報を取得するために使用されます。 湿度センサー 湿度の変化や結露の検知に使用されます。湿度が製品や製造プロセスに影響を与える場合に重要な要素になります。 カメラセンサー 製品やプロセスの視覚的な監視や品質管理に使用されます。画像や動画データの収集、異常検出、製品の外観検査などに役立ちます。 音響センサー 機械の異常な音や振動、環境の音量などを検知するために使用されます。異常音の早期検出や予防メンテナンスに役立ちます。 ガスセンサー 有害ガスや気体の検知に使用されます。安全性や環境への影響を監視し、必要な対策を講じることができます。 距離センサー オブジェクトの距離や位置の測定に使用されます。製品の位置検出や自動ガイドシステムに活用されます。 製造現場のIoT化におけるセンサー選定は、製造工程の具体的なニーズや要件、監視したいパラメーターを考慮する必要があります。 それぞれのセンサーの特徴を理解し最適なセンサーを選定してください。 ②センサーデータの活用例 ①センサー選定”で説明したそれぞれのセンサーを用い製造工程で取得したデータの具体的な活用例(シナリオ)をいくつか挙げて説明いたします。 品質管理 センサーを使用して製品の品質を監視します。 例えば、光センサーを使用して製品の外観や色を検査することで、不良品の検知が可能となります。 また、温度センサーや湿度センサーを使用することで、製品の環境条件に関するデータを収集し品質に影響を与える要因を把握することが可能となります。 生産効率向上 センサーを使用して生産ラインの効率を向上させます。 例えば加速度センサーや振動センサーを使用して機械の動作を監視し、適切なタイミングでメンテナンスや調整を行うことで、機械の故障や停止時間を最小限に抑えることが出来ます。 これにより、生産プロセスのボトルネックや改善の余地を特定し、生産ラインの最適化を図ることが可能となります。 安全性確保 センサーを使用して作業環境や機械の安全性を確保します。 例えばガスセンサーや煙センサーを使用して有害ガスや火災の発生を検知し早期警告を出す、またカメラセンサーや距離センサーを使用して、作業員の安全な位置や障害物を監視することが出来ます。 これにより、事故や衝突のリスクを低減することが可能となります。 リアルタイムモニタリング センサーを使用して製造プロセスをリアルタイムでモニタリングします。 例えば温度センサーや圧力センサーを使用して機械や設備の状態を監視し、異常を検知します。 データのリアルタイム収集と分析により、予知保全や即時対応が可能となります。 備品管理 センサーを使用して備品や資材の管理を効率化します。 例えばRFIDタグやバーコードスキャナーを使用して在庫管理を自動化し、在庫の追跡や補充のタイミングを正確に把握します。 これにより、在庫切れやロスを最小限に抑え、生産計画の円滑な遂行支援が可能となります。 3.まとめ 今回のコラムでは、“中堅・中小製造業のDX・IoT活用のコツ~製造工程のIoT化手順(センサー選定)~”につきまして簡単ではありますが説明させていただきました。 次回は、“製造工程のIoT化手順(ネットワーク)“につきまして詳しく説明していく予定です。 今回の紹介した内容をご検討頂き、自社での製造工程のIoT化導入検討や、過去に断念されたIoT化を再度進めていただければ幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■製造業の為のAI・IoT活用戦略!経営者セミナー 無料ダウンロードはこちらから https://www.funaisoken.co.jp/seminar/102603 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/07 (木) 13:00~15:00 2023/09/12 (火) 13:00~15:00 2023/09/14 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 AI・IoT取組事例講座編 「全国各地で見られる製造業でのAI・IoT取組事例」 AI・IoT活用戦略講座編 「製造業経営者が取り組むべきAI・IoT活用戦略」 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/102603   【無料ダウンロード】中小製造業 2024年ロボット活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/jy-robot_S045 ■製造業の経営者様限定でダウンロード可能な特別なレポートです! ■目次 1、中小製造業における課題とロボット活用の現状 2、2023年 中小製造業のロボット活用は協働ロボットが主流になる! 3、2023年 中小製造業が実践すべき協働ロボット活用 4、具体的な取組み方 5、協働ロボット活用成功事例 ■レポートの内容 中小製造業のロボット活用のトレンドと成功事例この1冊にまとめました。特に「何から始めればよいのか」と、その「具体的な方法」を例を出して解説し、さらに成功事例を掲載することでロボット活用の具体的な取り組み方が分かる資料になっております。 ■このレポートを読むメリット 中小製造業における協働ロボット活用の具体的な進め方と成功事例が分かります。 具体的な進め方と成功事例から自社でのロボット活用が可能な工程のヒントが見つかります。 https://www.funaisoken.co.jp/dl-contents/jy-robot_S045 いつも当コラムをご愛読いただきありがとうございます。 本コラムでは、中堅・中小製造業の企業におけるDX・IoT活用について、まずはどこからどの様にDX・IoTを導入していくべきか、わかりやすく説明させていただきます。 1.はじめに 前回のコラムで具体的にDXやIoT、AIを活用した業務の革新や改善を実施したいと考えたとき、まず『製造現場』へ導入すべきと提案しました。 なぜなら、『製造現場』の革新や改善が会社の売上や利益の向上に最も直結する業務だからです。 製造業は『モノを作る企業』です。 IoTを活用して製造現場を管理するには、まずは製造現場をIoT化する必要があります。 IoTを構成する主な要素は3つです。 デバイス:各種データを取得 ネットワーク:インターネットや社内システムへ接続 プラットフォーム・アプリケーション:データを蓄積・分析 そこで、今回は、その中の“デバイス:各種データを取得”に関して具体的な手順を説明させていただきます。 2.製造工程のIoT化手順 ①IoTセンサー選定 以下に一般的なセンサーの種類とその用途をいくつか挙げます。 温度センサー 製造プロセスや機械の温度監視に使用されます。異常な温度上昇や変動を検知し、製造工程での問題を早期に発見します。 圧力センサー 液体やガスの圧力を監視するために使用されます。圧力の変動や漏れを検知し、安全性や品質の向上に貢献します。 加速度センサー 機械や製品の振動や衝撃を測定するために使用されます。機械の異常振動や製品の取り扱いミスを検知し、トラブルを防ぎます。 光センサー 製品の位置検出、透明度の測定、光の強度の監視など、光に関する情報を取得するために使用されます。 湿度センサー 湿度の変化や結露の検知に使用されます。湿度が製品や製造プロセスに影響を与える場合に重要な要素になります。 カメラセンサー 製品やプロセスの視覚的な監視や品質管理に使用されます。画像や動画データの収集、異常検出、製品の外観検査などに役立ちます。 音響センサー 機械の異常な音や振動、環境の音量などを検知するために使用されます。異常音の早期検出や予防メンテナンスに役立ちます。 ガスセンサー 有害ガスや気体の検知に使用されます。安全性や環境への影響を監視し、必要な対策を講じることができます。 距離センサー オブジェクトの距離や位置の測定に使用されます。製品の位置検出や自動ガイドシステムに活用されます。 製造現場のIoT化におけるセンサー選定は、製造工程の具体的なニーズや要件、監視したいパラメーターを考慮する必要があります。 それぞれのセンサーの特徴を理解し最適なセンサーを選定してください。 ②センサーデータの活用例 ①センサー選定”で説明したそれぞれのセンサーを用い製造工程で取得したデータの具体的な活用例(シナリオ)をいくつか挙げて説明いたします。 品質管理 センサーを使用して製品の品質を監視します。 例えば、光センサーを使用して製品の外観や色を検査することで、不良品の検知が可能となります。 また、温度センサーや湿度センサーを使用することで、製品の環境条件に関するデータを収集し品質に影響を与える要因を把握することが可能となります。 生産効率向上 センサーを使用して生産ラインの効率を向上させます。 例えば加速度センサーや振動センサーを使用して機械の動作を監視し、適切なタイミングでメンテナンスや調整を行うことで、機械の故障や停止時間を最小限に抑えることが出来ます。 これにより、生産プロセスのボトルネックや改善の余地を特定し、生産ラインの最適化を図ることが可能となります。 安全性確保 センサーを使用して作業環境や機械の安全性を確保します。 例えばガスセンサーや煙センサーを使用して有害ガスや火災の発生を検知し早期警告を出す、またカメラセンサーや距離センサーを使用して、作業員の安全な位置や障害物を監視することが出来ます。 これにより、事故や衝突のリスクを低減することが可能となります。 リアルタイムモニタリング センサーを使用して製造プロセスをリアルタイムでモニタリングします。 例えば温度センサーや圧力センサーを使用して機械や設備の状態を監視し、異常を検知します。 データのリアルタイム収集と分析により、予知保全や即時対応が可能となります。 備品管理 センサーを使用して備品や資材の管理を効率化します。 例えばRFIDタグやバーコードスキャナーを使用して在庫管理を自動化し、在庫の追跡や補充のタイミングを正確に把握します。 これにより、在庫切れやロスを最小限に抑え、生産計画の円滑な遂行支援が可能となります。 3.まとめ 今回のコラムでは、“中堅・中小製造業のDX・IoT活用のコツ~製造工程のIoT化手順(センサー選定)~”につきまして簡単ではありますが説明させていただきました。 次回は、“製造工程のIoT化手順(ネットワーク)“につきまして詳しく説明していく予定です。 今回の紹介した内容をご検討頂き、自社での製造工程のIoT化導入検討や、過去に断念されたIoT化を再度進めていただければ幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■製造業の為のAI・IoT活用戦略!経営者セミナー 無料ダウンロードはこちらから https://www.funaisoken.co.jp/seminar/102603 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/09/07 (木) 13:00~15:00 2023/09/12 (火) 13:00~15:00 2023/09/14 (木) 13:00~15:00 ■講座内容 ゲスト講師講座「協働ロボット成功事例講座!ロボドリル工程の工数を年間1,200時間削減!」 AI・IoT取組事例講座編 「全国各地で見られる製造業でのAI・IoT取組事例」 AI・IoT活用戦略講座編 「製造業経営者が取り組むべきAI・IoT活用戦略」 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/102603   【無料ダウンロード】中小製造業 2024年ロボット活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/jy-robot_S045 ■製造業の経営者様限定でダウンロード可能な特別なレポートです! ■目次 1、中小製造業における課題とロボット活用の現状 2、2023年 中小製造業のロボット活用は協働ロボットが主流になる! 3、2023年 中小製造業が実践すべき協働ロボット活用 4、具体的な取組み方 5、協働ロボット活用成功事例 ■レポートの内容 中小製造業のロボット活用のトレンドと成功事例この1冊にまとめました。特に「何から始めればよいのか」と、その「具体的な方法」を例を出して解説し、さらに成功事例を掲載することでロボット活用の具体的な取り組み方が分かる資料になっております。 ■このレポートを読むメリット 中小製造業における協働ロボット活用の具体的な進め方と成功事例が分かります。 具体的な進め方と成功事例から自社でのロボット活用が可能な工程のヒントが見つかります。 https://www.funaisoken.co.jp/dl-contents/jy-robot_S045

話題のChatGPTとAIと日本の未来

2023.06.14

1.第4次AIブーム?ChatGPTとは 昨年末から対話側AI(人工知能)の「ChatGPT」が大きな話題を呼んでいます。 GPTは「Generative Pre-trained Transformer(生成可能な事前学習済み変換)」の頭文字で、人間と同じような自然な受け答えができる高性能チャットボットを意味しています。 ユーザーが入力した質問に対して、まるで人間のように自然な対話形式でAIが答えるチャットサービスです。 2022年11月に公開されてから、回答精度の高さが話題となり、利用者が増加しています。 第4次AIブームという言葉が、最近少し出てきていますが、過去にAIは3度のブームがありました。 AIの概念自体は古く、1950年に最初に提唱したのは英数学者のアラン・チューリング氏だといわれ、50年代後半から60年代にかけ、第1次AIブームが登場しました。 しかし迷路やパズルなどは解けても用途が限られたため下火となってしまいました。 第2次AIブームは80年代から90年代に起きました。 専門家の知識や知見をコンピューターに覚え込ませる「エキスパートシステム」という手法がとられましたが、結局は人間が情報を提供し続ける必要があり実用化には至りませんでした。 第3次AIブームはトロント大学のジェフリー・ヒントン博士らが2006年に「ディープラーニング(深層学習)」を提唱したことに始まります。 コンピューターが自己学習する機械学習のひとつで、人間の神経系に似ていることから「ニューラルネットワーク」とも呼ばれました。 AIの利用がこれまで進まなかったのは大量のデータを扱えるコンピューターや記憶装置、通信回線などがなかったためでしたが、クラウドやスマートフォンなどの登場により、AI活用が大きく進みました。 それを巧みにビジネスにしたのが「GAFA」などの米大手IT企業でした。 2.ChatGPTの現在地 ChatGPTは、小説の自動生成やゲームでの会話を生成する用途で開発された、「GPT」という言語モデルがベースになっています。 GPTは、与えられたテキストの指示に対して自然言語を生成するAIで、インターネット上にある膨大な情報を学習し、複雑な語彙・表現も理解できるのが特徴です。 さらに過去の会話内容を記憶したり、内容に誤りがあった場合はユーザーが訂正したりできるなど、より自然な会話に近づくための機能が搭載されています。 現在も改良が加えられており、2023年2月にはChatGPT-3.5がリリースされ、翌月2023年3月にはChatGPT-4がリリースされました。(2023年4月1日時点) ChatGPTもまた、深層学習機能をベースにしていますが、成功した最大の要因は多額の資金を集め、優秀な人材を集めたことだと言われています。 もともとグーグルなどにいたAI研究者らが研究目的で起ち上げ、そこにテスラのイーロン・マスクCEOらが参画しました。 マイクロソフトも始めに10億ドルを投じ、今や1兆円規模に膨れ上がっています。 一方でChatGPTによる回答は必ずしも正確ではなく、「嘘をつくAI」として、その利用を懸念する声もあります。 これは真偽が確認されていないテキストがトレーニングに使われているほか、十分に学習できていない質問には答えられないというAIの特性によるものの為です。 3.AIと日本の未来 現時点においてChatGPTは様々な課題があり、日々世界を巻き込んだ議論がされています。 一方で我々の見えていないところではAI技術の活用は幅広く使われるようになり、すでに生活の中に浸透しています。 AIを活用するか/しないかではなく、すでに我々の生活は、人工知能(AI)の利用は「避けて通れない」ところまで来ているのです。 世界中の若者はデジタルネーティブ世代であり、携帯電話を通じ、既にAIを日常的に体験しています。 重要なのは、利用するかしないかではなく、AIがもたらすメリットとデメリットの「バランスをどう考えるか。」ということだけなのです。 スマホが出始めたころ、たくさんの日本人はガラケーを使用しており、使い慣れたガラケーをすぐに手放せない人が多くいました。 性能や使い勝手は圧倒的にスマホが良いにも拘わらず。 しかし、スマホの利便性が浸透していくにしたがって、日本人全員がスマホを手にするようになりました。 ChatGPTに代表されるAIも同じです。 世界中でAIの開発競争が進んでいく中で、日本人だけAIを活用しないわけには行きません。 残念ながらAI技術は日本が開発しているわけではありません。 ほとんどは他国の技術です。 一方で昔から日本は、輸入した技術を発展させる能力でこの国は発展してきました。 他国の技術を取り込み、他国以上の発展させる能力・技術のある日本において、実はAI技術は日本を復活させる良いテーマなのです。 他国の技術と残念がらずに、AI技術で日本が一番になれるように積極的に活用していけると良いですね。 最後までお読みいただきありがとうございました。   ■「メーカー経営者のためのAI活用戦略」 取り組み事例に学ぶ!メーカー経営にAIを活⽤する具体的⽅法とは!! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 ■このような方にオススメ 自社の経営にAIがどう適用できるかを知りたいメーカー経営者の方 営業がまだまだ属人的で、営業スタッフ個人のスキルに依存していると感じているメーカー経営者の方 生産技術・生産管理部門も特定の熟練者に知見とノウハウが集中していると感じているメーカー経営者の方 製造部門では熟練技術・職人的な業務があり、属人化・ブラックBOX化していると感じているメーカー経営者の方 在庫管理を担当者の経験や勘に依存して課題を抱えているメーカー経営者の方 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100984   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 https://www.funaisoken.co.jp/dl-contents/jy-ai_S045 いつも当コラムをご愛読いただきありがとうございます。 1.第4次AIブーム?ChatGPTとは 昨年末から対話側AI(人工知能)の「ChatGPT」が大きな話題を呼んでいます。 GPTは「Generative Pre-trained Transformer(生成可能な事前学習済み変換)」の頭文字で、人間と同じような自然な受け答えができる高性能チャットボットを意味しています。 ユーザーが入力した質問に対して、まるで人間のように自然な対話形式でAIが答えるチャットサービスです。 2022年11月に公開されてから、回答精度の高さが話題となり、利用者が増加しています。 第4次AIブームという言葉が、最近少し出てきていますが、過去にAIは3度のブームがありました。 AIの概念自体は古く、1950年に最初に提唱したのは英数学者のアラン・チューリング氏だといわれ、50年代後半から60年代にかけ、第1次AIブームが登場しました。 しかし迷路やパズルなどは解けても用途が限られたため下火となってしまいました。 第2次AIブームは80年代から90年代に起きました。 専門家の知識や知見をコンピューターに覚え込ませる「エキスパートシステム」という手法がとられましたが、結局は人間が情報を提供し続ける必要があり実用化には至りませんでした。 第3次AIブームはトロント大学のジェフリー・ヒントン博士らが2006年に「ディープラーニング(深層学習)」を提唱したことに始まります。 コンピューターが自己学習する機械学習のひとつで、人間の神経系に似ていることから「ニューラルネットワーク」とも呼ばれました。 AIの利用がこれまで進まなかったのは大量のデータを扱えるコンピューターや記憶装置、通信回線などがなかったためでしたが、クラウドやスマートフォンなどの登場により、AI活用が大きく進みました。 それを巧みにビジネスにしたのが「GAFA」などの米大手IT企業でした。 2.ChatGPTの現在地 ChatGPTは、小説の自動生成やゲームでの会話を生成する用途で開発された、「GPT」という言語モデルがベースになっています。 GPTは、与えられたテキストの指示に対して自然言語を生成するAIで、インターネット上にある膨大な情報を学習し、複雑な語彙・表現も理解できるのが特徴です。 さらに過去の会話内容を記憶したり、内容に誤りがあった場合はユーザーが訂正したりできるなど、より自然な会話に近づくための機能が搭載されています。 現在も改良が加えられており、2023年2月にはChatGPT-3.5がリリースされ、翌月2023年3月にはChatGPT-4がリリースされました。(2023年4月1日時点) ChatGPTもまた、深層学習機能をベースにしていますが、成功した最大の要因は多額の資金を集め、優秀な人材を集めたことだと言われています。 もともとグーグルなどにいたAI研究者らが研究目的で起ち上げ、そこにテスラのイーロン・マスクCEOらが参画しました。 マイクロソフトも始めに10億ドルを投じ、今や1兆円規模に膨れ上がっています。 一方でChatGPTによる回答は必ずしも正確ではなく、「嘘をつくAI」として、その利用を懸念する声もあります。 これは真偽が確認されていないテキストがトレーニングに使われているほか、十分に学習できていない質問には答えられないというAIの特性によるものの為です。 3.AIと日本の未来 現時点においてChatGPTは様々な課題があり、日々世界を巻き込んだ議論がされています。 一方で我々の見えていないところではAI技術の活用は幅広く使われるようになり、すでに生活の中に浸透しています。 AIを活用するか/しないかではなく、すでに我々の生活は、人工知能(AI)の利用は「避けて通れない」ところまで来ているのです。 世界中の若者はデジタルネーティブ世代であり、携帯電話を通じ、既にAIを日常的に体験しています。 重要なのは、利用するかしないかではなく、AIがもたらすメリットとデメリットの「バランスをどう考えるか。」ということだけなのです。 スマホが出始めたころ、たくさんの日本人はガラケーを使用しており、使い慣れたガラケーをすぐに手放せない人が多くいました。 性能や使い勝手は圧倒的にスマホが良いにも拘わらず。 しかし、スマホの利便性が浸透していくにしたがって、日本人全員がスマホを手にするようになりました。 ChatGPTに代表されるAIも同じです。 世界中でAIの開発競争が進んでいく中で、日本人だけAIを活用しないわけには行きません。 残念ながらAI技術は日本が開発しているわけではありません。 ほとんどは他国の技術です。 一方で昔から日本は、輸入した技術を発展させる能力でこの国は発展してきました。 他国の技術を取り込み、他国以上の発展させる能力・技術のある日本において、実はAI技術は日本を復活させる良いテーマなのです。 他国の技術と残念がらずに、AI技術で日本が一番になれるように積極的に活用していけると良いですね。 最後までお読みいただきありがとうございました。   ■「メーカー経営者のためのAI活用戦略」 取り組み事例に学ぶ!メーカー経営にAIを活⽤する具体的⽅法とは!! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 ■このような方にオススメ 自社の経営にAIがどう適用できるかを知りたいメーカー経営者の方 営業がまだまだ属人的で、営業スタッフ個人のスキルに依存していると感じているメーカー経営者の方 生産技術・生産管理部門も特定の熟練者に知見とノウハウが集中していると感じているメーカー経営者の方 製造部門では熟練技術・職人的な業務があり、属人化・ブラックBOX化していると感じているメーカー経営者の方 在庫管理を担当者の経験や勘に依存して課題を抱えているメーカー経営者の方 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100984   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 https://www.funaisoken.co.jp/dl-contents/jy-ai_S045

工場経営の4つの経営資源

2023.06.07

工場経営には4つの経営資源(ヒト・モノ・カネ・ジョウホウ)の活用の善し悪しが重要です。 その中でも『ジョウホウ』の活用が最も遅れているように思います。 これからの工場経営には情報の戦略的な活用として、①課題を見つけ出すこと、②実態をデータで顕在化させること、③ビッグデータから因果関係を探り出すこと、この3つが重要だということです。 1.課題を見つけ出すこと 作業を続けたいが中断せざるを得ない状態にされた理由、すなわち作業中断の理由の情報、また、機械設備の非稼働の理由の情報、そして、ワークの流れでの工程間滞留の理由の情報などは、そこに課題が存在していることを示しています。 しかし、「作業者が8時間作業して40個モノを作った」というような生産実績のマクロな情報では、そこに課題があることは分かりません。 ある一人の作業者の作業中にたまたま起こった作業の中断という異常の理由といったようなミクロの情報が得られなければ課題の存在を知ることができません。 つまり、課題を捕えたいならミクロの情報が得られるような仕掛け(情報システム化)を作っておかなければなりません。 2.実態をデータで顕在化(見える化)させること 改善やコストダウンが困難になっているのは、目で見ても見えない、データ・サンプリング法も使えないというような実態把握ができなくなっているからです。 課題の改善においても実態把握が重要です。 生産活動の結果としての実績データや生産活動に使われた工数データといったマクロの情報だけでなく、生産活動のリアルタイムな途中経過、チーム編成の変更やチョコ停などを含む製造履歴、ちょっとした異常発生とその要因といったミクロの情報が自動的に採取されて、即座に提供されるような情報ツールが無ければ、真の実態把握はできません。 要するに、情報ツールを用いて実態をデータで顕在化(見える化)させることが重要です。 それがIoTです。 3.ビッグデータから因果関係を探り出すこと ビッグデータができたとしても、そのデータの中から変革のための欲しい情報が引き出せなければ意味はありません。 まずは、データ採取時に「何を作っていた時のデータ」かが分かるように、インデックスとして製造番号、ロット番号、品番などで括られたデータになっていなければなりません。 次に、あらかじめ因果関係が分かっているデータを検索するのは、検索エンジンと呼ばれるソフトウェアを使えばよいのですが、まだ因果関係の分からないようなデータを探し出して実態の悪い順に並べるなどのことができれば、真の原因究明に役立つことになります。 つまり、ビッグデータから因果関係が探り出せるような画期的なソフトウェアが必要です。 それがAIです。 4.まとめ 工場において4つの経営資源の一つである『ジョウホウ資源』の活用は情報処理、情報活用と進められてはきましたが、他の経営資源の活用に比べて低いものだと感じています。 しかし、IoTやAIなどの新しいテクノロジーの出現によって、工場の課題を解決して変革を実現するといった、戦略的な『ジョウホウ資源』の活用が可能になってきました。 今、工場が外部環境の変化(多様性需要・顧客嗜好や満足・社会・法律・環境)に対して迅速に適応していかなければなりません。 そのための工場の変革には、課題を抽出し、実態をデータで顕在化し、ビッグデータから因果関係を探り出して課題解決していかなければなりません。 今、工場の変革のための『ジョウホウ資源』の活用の新たな一歩が開かれつつあります。 上記内容について、より具体的に詳細をお知りになりたい場合はお気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■「メーカー経営者のためのAI活用戦略」 取り組み事例に学ぶ!メーカー経営にAIを活⽤する具体的⽅法とは!! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 ■このような方にオススメ 自社の経営にAIがどう適用できるかを知りたいメーカー経営者の方 営業がまだまだ属人的で、営業スタッフ個人のスキルに依存していると感じているメーカー経営者の方 生産技術・生産管理部門も特定の熟練者に知見とノウハウが集中していると感じているメーカー経営者の方 製造部門では熟練技術・職人的な業務があり、属人化・ブラックBOX化していると感じているメーカー経営者の方 在庫管理を担当者の経験や勘に依存して課題を抱えているメーカー経営者の方 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100984   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 https://www.funaisoken.co.jp/dl-contents/jy-ai_S045 いつも当コラムをご愛読いただきありがとうございます。 工場経営には4つの経営資源(ヒト・モノ・カネ・ジョウホウ)の活用の善し悪しが重要です。 その中でも『ジョウホウ』の活用が最も遅れているように思います。 これからの工場経営には情報の戦略的な活用として、①課題を見つけ出すこと、②実態をデータで顕在化させること、③ビッグデータから因果関係を探り出すこと、この3つが重要だということです。 1.課題を見つけ出すこと 作業を続けたいが中断せざるを得ない状態にされた理由、すなわち作業中断の理由の情報、また、機械設備の非稼働の理由の情報、そして、ワークの流れでの工程間滞留の理由の情報などは、そこに課題が存在していることを示しています。 しかし、「作業者が8時間作業して40個モノを作った」というような生産実績のマクロな情報では、そこに課題があることは分かりません。 ある一人の作業者の作業中にたまたま起こった作業の中断という異常の理由といったようなミクロの情報が得られなければ課題の存在を知ることができません。 つまり、課題を捕えたいならミクロの情報が得られるような仕掛け(情報システム化)を作っておかなければなりません。 2.実態をデータで顕在化(見える化)させること 改善やコストダウンが困難になっているのは、目で見ても見えない、データ・サンプリング法も使えないというような実態把握ができなくなっているからです。 課題の改善においても実態把握が重要です。 生産活動の結果としての実績データや生産活動に使われた工数データといったマクロの情報だけでなく、生産活動のリアルタイムな途中経過、チーム編成の変更やチョコ停などを含む製造履歴、ちょっとした異常発生とその要因といったミクロの情報が自動的に採取されて、即座に提供されるような情報ツールが無ければ、真の実態把握はできません。 要するに、情報ツールを用いて実態をデータで顕在化(見える化)させることが重要です。 それがIoTです。 3.ビッグデータから因果関係を探り出すこと ビッグデータができたとしても、そのデータの中から変革のための欲しい情報が引き出せなければ意味はありません。 まずは、データ採取時に「何を作っていた時のデータ」かが分かるように、インデックスとして製造番号、ロット番号、品番などで括られたデータになっていなければなりません。 次に、あらかじめ因果関係が分かっているデータを検索するのは、検索エンジンと呼ばれるソフトウェアを使えばよいのですが、まだ因果関係の分からないようなデータを探し出して実態の悪い順に並べるなどのことができれば、真の原因究明に役立つことになります。 つまり、ビッグデータから因果関係が探り出せるような画期的なソフトウェアが必要です。 それがAIです。 4.まとめ 工場において4つの経営資源の一つである『ジョウホウ資源』の活用は情報処理、情報活用と進められてはきましたが、他の経営資源の活用に比べて低いものだと感じています。 しかし、IoTやAIなどの新しいテクノロジーの出現によって、工場の課題を解決して変革を実現するといった、戦略的な『ジョウホウ資源』の活用が可能になってきました。 今、工場が外部環境の変化(多様性需要・顧客嗜好や満足・社会・法律・環境)に対して迅速に適応していかなければなりません。 そのための工場の変革には、課題を抽出し、実態をデータで顕在化し、ビッグデータから因果関係を探り出して課題解決していかなければなりません。 今、工場の変革のための『ジョウホウ資源』の活用の新たな一歩が開かれつつあります。 上記内容について、より具体的に詳細をお知りになりたい場合はお気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■「メーカー経営者のためのAI活用戦略」 取り組み事例に学ぶ!メーカー経営にAIを活⽤する具体的⽅法とは!! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 ■このような方にオススメ 自社の経営にAIがどう適用できるかを知りたいメーカー経営者の方 営業がまだまだ属人的で、営業スタッフ個人のスキルに依存していると感じているメーカー経営者の方 生産技術・生産管理部門も特定の熟練者に知見とノウハウが集中していると感じているメーカー経営者の方 製造部門では熟練技術・職人的な業務があり、属人化・ブラックBOX化していると感じているメーカー経営者の方 在庫管理を担当者の経験や勘に依存して課題を抱えているメーカー経営者の方 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100984   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 https://www.funaisoken.co.jp/dl-contents/jy-ai_S045

製造業画像検査装置の最新情報AI・ディープラーニング

2023.05.30

本コラムでは、中堅・中小製造業の企業様にご活用頂きたい画像検査の最新情報について、何がどの様に画像検査が進化し、利用可能なのかを分かりやすく説明をさせて頂きます。 その最新情報の中でも特に画像処理検査に関するAIとディープラーニングについて説明させて頂きます。 1.画像処理検査に関するAI・ディープラーニングの最新情報 1.製造ラインでの検査: AI・ディープラーニングを使用することで、製造ラインでの欠陥検査や品質管理を効率化することができます。例えば、自動車部品や電子部品の検査では、欠陥を自動的に検出することが可能です。 2.医療画像解析: AI・ディープラーニングを使用することで、X線画像やMRI画像などの医療画像の解析を効率化することができます。例えば、乳がん検査では、AIによる画像解析を用いることで、従来の方法よりも高い精度で検査を行うことができます。 3.超解像技術: 超解像技術は、低解像度の画像から高解像度の画像を生成する技術です。最近の研究では、AI・ディープラーニングを使用することで、より高品質な超解像画像を生成することが可能になっています。 4.検査データの蓄積と利活用: AI・ディープラーニングを使用することで、大量の検査データを蓄積し、そのデータを解析することで、より高い精度で欠陥検査を行うことができます。また、蓄積されたデータを活用することで、将来的には検査の自動化や予防保全などの新しいサービスの開発にもつながると期待されています。 5.異常検知技術: AI・ディープラーニングを使用することで、画像の異常を検出する技術が進化しています。例えば、監視カメラの映像から異常を検出するシステムや、衛星画像から異常地形を検出するシステムなどが開発されています。 上記の5つの列挙項目から分かる様に様々な新技術と融合して画像検査が新しく進んでいる事が分かります。本コラムでは製造業から見た視点でこれらの新しい画像検査の活用方法を説明させて頂きます。 2.AIとディープラーニングの違いをもう一度、確認してみましょう AI(人工知能)は、人間の知能を模倣して構築されたコンピューターシステムのことを指します。一方、ディープラーニングは、AIの一種で、人工ニューラルネットワークを使用した機械学習の一種です。 つまり、AIは、様々な技術を用いて構築された人工的な知能を指し、その中にはディープラーニングが含まれます。ディープラーニングは、人工的に構築されたニューラルネットワークを使用して、データからパターンや特徴を自動的に抽出し、それらを使って新しいデータを分類したり予測したりすることができます。 したがって、ディープラーニングは、AIの中でも特定のアプローチや技術の一種であり、AIの中で広く使用される技術の一つです。 上記を正しく理解した上で、先の5つの項目のうち「超解像技術」、「検査データの蓄積と利活用」。「異常検知技術」について、どの様な技術かを簡単にご説明いたします。 3.「超解像技術」、「検査データの蓄積と利活用」、「異常検知技術」について 3.1 超解像技術: 低解像度の画像から高解像度の画像を生成する技術です。低解像度の画像から高解像度の画像を生成することで、画像の細部をより詳細に見ることができるため、画像処理や画像解析において非常に有用です。 従来の方法では、画像の解像度を向上させるためには、画像を拡大して補間する方法が一般的でした。しかし、この方法では、画像がぼやけたり、データが失われたりしてしまうことがあります。これに対して、超解像技術は、低解像度の画像から高解像度の画像を生成することで、画像の品質を維持しながら解像度を向上させることができます。 近年、ディープラーニングを用いた超解像技術が注目されており、深層学習を用いることで、より高品質な超解像画像を生成することが可能になっています。具体的には、低解像度の画像を入力として、ディープラーニングモデルを学習させ、高解像度の画像を出力することができます。 つまり、低解像度のカメラで撮影した画像でも超高解像度の画像を生成して、今まで検出が難しかった欠陥も見つけられる可能性があります。 3.2 製造現場での検査画像データの蓄積と利活用: 製造プロセスにおける品質管理に重要な役割を持っています。工場での画像検査は、製品の外観や内部の欠陥を検出するために行われ、多数の画像データが生成されます。これらのデータを蓄積して、品質管理や生産改善に利用することができます。 まず、工場での画像検査データの蓄積には、データベースやサーバーなどのシステムが必要です。画像検査システムから生成されたデータを自動的に収集し、適切に整理して保存することが求められます。データの保存期間やアクセス権限など、セキュリティに関する規定も重要です。 利活用の面では、画像検査データを分析することで、製品の品質改善や異常検知に役立てることができます。例えば、同じ製品が何度も不良品として検査に引っかかっている場合、その原因を特定して改善することができます。また、製品の品質を定量的に評価するための指標として、画像解析技術を活用することも可能です。 さらに、画像検査データの蓄積と利活用には、機械学習や人工知能技術を活用することができます。これらの技術を用いることで、画像検査データをより高度に分析し、製品の品質改善や異常検知の精度を向上させることができます。 つまり、蓄積された検査画像データは単純に良品と不良品を見分けた結果ではなく、その不良の原因を突き止めるための大切な情報になります。機械学習や人工知能技術を活用し、フィードバックして不良原因を改善・改修・見直しする事で歩留まり率を改善する事が出来ます。 3.3 異常検知技術: 製品の品質管理において重要な役割を果たす技術です。製造工場では、多数の製品が生産されますが、その中には欠陥品や不良品が含まれることがあります。製品の検査において、人手による検査だけではなく、機械学習やディープラーニングを用いた異常検知技術を活用することで、効率的かつ正確な品質管理を実現することができます。 異常検知技術は、正常な製品の画像を多数収集し、学習モデルを作成することから始まります。学習モデルは、製品の画像から特徴量を抽出し、正常な製品の特徴量分布を学習します。このモデルを用いて、未知の製品の画像を分類することで、異常品を検知することができます。 異常検知技術は、機械学習やディープラーニングの分野で発展しています。最近では、異常検知に特化したアルゴリズムやモデルが開発され、高い精度での異常検知が可能になってきています。また、異常検知技術は、多様な画像処理技術と組み合わせることで、より高度な品質管理が可能となっています。 異常検知技術を用いた製品の品質管理には、以下のようなメリットがあります。 自動化により人手作業の負担を軽減できる。 正確性が向上し、品質管理の効率化が期待できる。 未知の欠陥や不良品を検知できるため、製品の品質改善につながる。 データの蓄積や分析により、生産プロセスの改善に役立てることができる。 つまり、製品の品質管理において異常検知技術を活用することで、効率的かつ正確な品質管理を実現することができます。 4.まとめ 今回のコラムでは、中堅・中小製造業の企業様にご活用頂きたい画像検査の最新情報について、何がどの様に画像検査が進化し、利用可能なのかを分かりやすく説明をさせて頂きました。今回の紹介した内容をご検討頂き、自社での画像検査装置の導入検討や、過去に断念された画像検査装置の導入を再度進めていただければ幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■AI画像検査導入事例解説レポート AIを活用し「積算・見積もりのドンブリ勘定」からの脱却を実現! AI活用を通じて“ベテラン社員の働き方改革”を推進! 積算・見積もり業務の“標準化・脱属人化・技術継承”実践事例とは? ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext06-01-dl.html 本レポートでは、「AI画像検査」にテーマを絞り、具体的な導入方法と成功事例をご紹介いたします。 このような方におすすめ 人手に頼った目視検査で工数がかかっている 画像検査装置の導入が未経験である 小さな不良なので画像検査が可能なのか分からない 人による目視検査で不良品が流出している 検査業務が属人化している   ■関連するセミナーのご案内 多品種少量生産の塗装&外観検査工程ロボット活用!社長セミナー 「多品種少量生産の塗装加工業の社長が取り組むべきロボット戦略」 ロボットによる自動塗装で人手を増やさずに生産性を上げる! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100495 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100495 いつも当コラムをご愛読頂きましてありがとうございます。 本コラムでは、中堅・中小製造業の企業様にご活用頂きたい画像検査の最新情報について、何がどの様に画像検査が進化し、利用可能なのかを分かりやすく説明をさせて頂きます。 その最新情報の中でも特に画像処理検査に関するAIとディープラーニングについて説明させて頂きます。 1.画像処理検査に関するAI・ディープラーニングの最新情報 1.製造ラインでの検査: AI・ディープラーニングを使用することで、製造ラインでの欠陥検査や品質管理を効率化することができます。例えば、自動車部品や電子部品の検査では、欠陥を自動的に検出することが可能です。 2.医療画像解析: AI・ディープラーニングを使用することで、X線画像やMRI画像などの医療画像の解析を効率化することができます。例えば、乳がん検査では、AIによる画像解析を用いることで、従来の方法よりも高い精度で検査を行うことができます。 3.超解像技術: 超解像技術は、低解像度の画像から高解像度の画像を生成する技術です。最近の研究では、AI・ディープラーニングを使用することで、より高品質な超解像画像を生成することが可能になっています。 4.検査データの蓄積と利活用: AI・ディープラーニングを使用することで、大量の検査データを蓄積し、そのデータを解析することで、より高い精度で欠陥検査を行うことができます。また、蓄積されたデータを活用することで、将来的には検査の自動化や予防保全などの新しいサービスの開発にもつながると期待されています。 5.異常検知技術: AI・ディープラーニングを使用することで、画像の異常を検出する技術が進化しています。例えば、監視カメラの映像から異常を検出するシステムや、衛星画像から異常地形を検出するシステムなどが開発されています。 上記の5つの列挙項目から分かる様に様々な新技術と融合して画像検査が新しく進んでいる事が分かります。本コラムでは製造業から見た視点でこれらの新しい画像検査の活用方法を説明させて頂きます。 2.AIとディープラーニングの違いをもう一度、確認してみましょう AI(人工知能)は、人間の知能を模倣して構築されたコンピューターシステムのことを指します。一方、ディープラーニングは、AIの一種で、人工ニューラルネットワークを使用した機械学習の一種です。 つまり、AIは、様々な技術を用いて構築された人工的な知能を指し、その中にはディープラーニングが含まれます。ディープラーニングは、人工的に構築されたニューラルネットワークを使用して、データからパターンや特徴を自動的に抽出し、それらを使って新しいデータを分類したり予測したりすることができます。 したがって、ディープラーニングは、AIの中でも特定のアプローチや技術の一種であり、AIの中で広く使用される技術の一つです。 上記を正しく理解した上で、先の5つの項目のうち「超解像技術」、「検査データの蓄積と利活用」。「異常検知技術」について、どの様な技術かを簡単にご説明いたします。 3.「超解像技術」、「検査データの蓄積と利活用」、「異常検知技術」について 3.1 超解像技術: 低解像度の画像から高解像度の画像を生成する技術です。低解像度の画像から高解像度の画像を生成することで、画像の細部をより詳細に見ることができるため、画像処理や画像解析において非常に有用です。 従来の方法では、画像の解像度を向上させるためには、画像を拡大して補間する方法が一般的でした。しかし、この方法では、画像がぼやけたり、データが失われたりしてしまうことがあります。これに対して、超解像技術は、低解像度の画像から高解像度の画像を生成することで、画像の品質を維持しながら解像度を向上させることができます。 近年、ディープラーニングを用いた超解像技術が注目されており、深層学習を用いることで、より高品質な超解像画像を生成することが可能になっています。具体的には、低解像度の画像を入力として、ディープラーニングモデルを学習させ、高解像度の画像を出力することができます。 つまり、低解像度のカメラで撮影した画像でも超高解像度の画像を生成して、今まで検出が難しかった欠陥も見つけられる可能性があります。 3.2 製造現場での検査画像データの蓄積と利活用: 製造プロセスにおける品質管理に重要な役割を持っています。工場での画像検査は、製品の外観や内部の欠陥を検出するために行われ、多数の画像データが生成されます。これらのデータを蓄積して、品質管理や生産改善に利用することができます。 まず、工場での画像検査データの蓄積には、データベースやサーバーなどのシステムが必要です。画像検査システムから生成されたデータを自動的に収集し、適切に整理して保存することが求められます。データの保存期間やアクセス権限など、セキュリティに関する規定も重要です。 利活用の面では、画像検査データを分析することで、製品の品質改善や異常検知に役立てることができます。例えば、同じ製品が何度も不良品として検査に引っかかっている場合、その原因を特定して改善することができます。また、製品の品質を定量的に評価するための指標として、画像解析技術を活用することも可能です。 さらに、画像検査データの蓄積と利活用には、機械学習や人工知能技術を活用することができます。これらの技術を用いることで、画像検査データをより高度に分析し、製品の品質改善や異常検知の精度を向上させることができます。 つまり、蓄積された検査画像データは単純に良品と不良品を見分けた結果ではなく、その不良の原因を突き止めるための大切な情報になります。機械学習や人工知能技術を活用し、フィードバックして不良原因を改善・改修・見直しする事で歩留まり率を改善する事が出来ます。 3.3 異常検知技術: 製品の品質管理において重要な役割を果たす技術です。製造工場では、多数の製品が生産されますが、その中には欠陥品や不良品が含まれることがあります。製品の検査において、人手による検査だけではなく、機械学習やディープラーニングを用いた異常検知技術を活用することで、効率的かつ正確な品質管理を実現することができます。 異常検知技術は、正常な製品の画像を多数収集し、学習モデルを作成することから始まります。学習モデルは、製品の画像から特徴量を抽出し、正常な製品の特徴量分布を学習します。このモデルを用いて、未知の製品の画像を分類することで、異常品を検知することができます。 異常検知技術は、機械学習やディープラーニングの分野で発展しています。最近では、異常検知に特化したアルゴリズムやモデルが開発され、高い精度での異常検知が可能になってきています。また、異常検知技術は、多様な画像処理技術と組み合わせることで、より高度な品質管理が可能となっています。 異常検知技術を用いた製品の品質管理には、以下のようなメリットがあります。 自動化により人手作業の負担を軽減できる。 正確性が向上し、品質管理の効率化が期待できる。 未知の欠陥や不良品を検知できるため、製品の品質改善につながる。 データの蓄積や分析により、生産プロセスの改善に役立てることができる。 つまり、製品の品質管理において異常検知技術を活用することで、効率的かつ正確な品質管理を実現することができます。 4.まとめ 今回のコラムでは、中堅・中小製造業の企業様にご活用頂きたい画像検査の最新情報について、何がどの様に画像検査が進化し、利用可能なのかを分かりやすく説明をさせて頂きました。今回の紹介した内容をご検討頂き、自社での画像検査装置の導入検討や、過去に断念された画像検査装置の導入を再度進めていただければ幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■AI画像検査導入事例解説レポート AIを活用し「積算・見積もりのドンブリ勘定」からの脱却を実現! AI活用を通じて“ベテラン社員の働き方改革”を推進! 積算・見積もり業務の“標準化・脱属人化・技術継承”実践事例とは? ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext06-01-dl.html 本レポートでは、「AI画像検査」にテーマを絞り、具体的な導入方法と成功事例をご紹介いたします。 このような方におすすめ 人手に頼った目視検査で工数がかかっている 画像検査装置の導入が未経験である 小さな不良なので画像検査が可能なのか分からない 人による目視検査で不良品が流出している 検査業務が属人化している   ■関連するセミナーのご案内 多品種少量生産の塗装&外観検査工程ロボット活用!社長セミナー 「多品種少量生産の塗装加工業の社長が取り組むべきロボット戦略」 ロボットによる自動塗装で人手を増やさずに生産性を上げる! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100495 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100495

多品種少量生産型製造業の付加価値をアップする見積もりAI

2023.05.24

1.付加価値アップのキーワードは「熟練技術のDX化」 突然ですが、皆様の会社で 以下のような業務はありませんか? 人的依存の高い業務 属人的な業務 手作業が多い業務 一部の社員に偏っている業務 熟練と勘と経験を要する業務 以上を標準化・パッケージ化して誰でもできるように技術継承をしたい業務 特に、「一品一様」「多品種少量生産」に該当する製造業の皆様にとっては、自社の何らかの業務・工程で思い当たる節があるのではないかと思います。 また、外部環境を見渡してみると、原材料やエネルギーコストの乱高下が今後も予測される中、そのような時代にも耐え得る経営を志向していく必要があります。 一言で言えば、「原材料等の乱高下の影響を極力低減できるビジネスモデル」。要は、「自ら付加価値を作れるビジネスモデル」でないと、このような乱高下の時代に安定した経営は難しいでしょう。 「付加価値を作れる」とは、やはり「熟練したヒトの手が介在して差別化できるノウハウ・情報・スキルが必須」ということです。 しかし、今時、そのような熟練者を採用する・育成する方が難しく、その技術継承も困難です。 そこで、「DX化」が必須となります。 「熟練技術・熟練ノウハウ・熟練スキルのDX化」です。 誰でもできるような、誰でも知っているような技術・ノウハウ・スキルではなく、「その企業独自の技術・ノウハウ・スキル」をDX化していくことで、永続性と安定性が作れるようになります。 2.「熟練技術のDX化」の事例 熟練技術・熟練ノウハウ・熟練スキルのDX化の一例として、「見積もり業務に関するDX化」の事例をご紹介いたします。 【事例サマリー】 ・従業員数:約50名 ・業種:建築用金属製品製造業 (一品一様・多品種少量生産) ・2DCADデータを用いた見積もりAIシステムを導入 ・社長自ら手掛けていた見積もり業務の「標準化・脱属人化・技術継承」を推進 今回ご紹介する「見積もり業務に関するDX化」の実践企業様では、見積もりAIシステムの導入を進めています。 この見積もりAIシステムは、 ①新規の見積もり作成の際に、参考となる過去の図面データを探すのに時間がかかる ②参考となる過去の図面データを探す工程が特に属人化しており、熟練者しか対応できない ③熟練者が見積もり業務以外の仕事に時間を割くことが難しい 等の「見積もり業務」に関する課題解決をサポートするためのシステムです。 こちらの企業様では見積もりAIシステムの導入を通じて、 ①新規の見積もり作成の際に必要な「過去の参考図面データ」を探すスピードが速くなり、見積もり作成時間を大幅に短縮することができた ②属人的な見積もり作成ノウハウを標準化し、熟練者以外の社員でも見積もり業務に従事することができるようになった ③社長自ら従事していた見積もり業務の時間を浮かせ、空いた時間で社長が別の高付加価値業務へ取り組むことができるようになった 等の導入効果を得ることができました。 【見積もりAIシステム導入前】 【見積もりAIシステム導入後】 AI活用の話題となると、 既存業務を「より楽に」できるようになる(=効率化) 既存業務を「より少ない人数で」できるようになる(=省人化) という主旨の話が先行しがちですが、今回ご紹介した事例の「より本質的なポイント」は単なる「効率化・省人化」の実現だけでなく、AI導入を通じて浮かせることができた社長の時間を「より高付加価値な業務」へ投資することが可能となった つまり、「社長の時間の使い方改革」を実現できたという点が、「より本質的なポイント」となります。 AI活用を通じて「社長の時間の使い方」を変えていくことで、 経営方針の策定(会社の方向付け) 設備計画の構想 その他の意思決定 等のような、「本当に社長にしかできない高付加価値な仕事」に社長が時間を使えるようになっていきます。 今回は見積もり業務を例にお伝えさせていただきましたが、読者の皆様の会社でも、 人的依存の高い業務 属人的な業務 手作業が多い業務 一部の社員に偏っている業務 熟練と勘と経験を要する業務 等が存在していないでしょうか? 本コラムが皆様の会社における「熟練技術・熟練ノウハウ・熟練スキルのDX化」の切り口を考えるきっかけとなれば幸いです。 今回ご紹介した事例の詳細についてご興味のある方は、以下のURLから是非お気軽にお問い合わせください。 ▼本コラムの内容に関するお問い合わせはこちら https://formslp.funaisoken.co.jp/form01/lp/post/inquiry-S045.html?siteno=S045   ■関連するセミナーのご案内 多品種少量生産板金加工業の為の見積もりAI!社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100000 ■開催内容 3D-CADデータを用いた高精度の類似検索!従業員数25名の工業用模型製造業におけるAI活用最新事例 2D-CAD図面とPDF図面を用いた見積もりAIシステムを導入!従業員数51名の板金加工業におけるAI活用最新事例 AI活用戦略講座編 「板金加工業経営者が取り組むべきAI活用戦略」 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/06/14 (水) 13:00~15:00 2023/06/16 (金) 13:00~15:00 2023/06/21 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100000 いつも当コラムをご愛読いただきありがとうございます。 1.付加価値アップのキーワードは「熟練技術のDX化」 突然ですが、皆様の会社で 以下のような業務はありませんか? 人的依存の高い業務 属人的な業務 手作業が多い業務 一部の社員に偏っている業務 熟練と勘と経験を要する業務 以上を標準化・パッケージ化して誰でもできるように技術継承をしたい業務 特に、「一品一様」「多品種少量生産」に該当する製造業の皆様にとっては、自社の何らかの業務・工程で思い当たる節があるのではないかと思います。 また、外部環境を見渡してみると、原材料やエネルギーコストの乱高下が今後も予測される中、そのような時代にも耐え得る経営を志向していく必要があります。 一言で言えば、「原材料等の乱高下の影響を極力低減できるビジネスモデル」。要は、「自ら付加価値を作れるビジネスモデル」でないと、このような乱高下の時代に安定した経営は難しいでしょう。 「付加価値を作れる」とは、やはり「熟練したヒトの手が介在して差別化できるノウハウ・情報・スキルが必須」ということです。 しかし、今時、そのような熟練者を採用する・育成する方が難しく、その技術継承も困難です。 そこで、「DX化」が必須となります。 「熟練技術・熟練ノウハウ・熟練スキルのDX化」です。 誰でもできるような、誰でも知っているような技術・ノウハウ・スキルではなく、「その企業独自の技術・ノウハウ・スキル」をDX化していくことで、永続性と安定性が作れるようになります。 2.「熟練技術のDX化」の事例 熟練技術・熟練ノウハウ・熟練スキルのDX化の一例として、「見積もり業務に関するDX化」の事例をご紹介いたします。 【事例サマリー】 ・従業員数:約50名 ・業種:建築用金属製品製造業 (一品一様・多品種少量生産) ・2DCADデータを用いた見積もりAIシステムを導入 ・社長自ら手掛けていた見積もり業務の「標準化・脱属人化・技術継承」を推進 今回ご紹介する「見積もり業務に関するDX化」の実践企業様では、見積もりAIシステムの導入を進めています。 この見積もりAIシステムは、 ①新規の見積もり作成の際に、参考となる過去の図面データを探すのに時間がかかる ②参考となる過去の図面データを探す工程が特に属人化しており、熟練者しか対応できない ③熟練者が見積もり業務以外の仕事に時間を割くことが難しい 等の「見積もり業務」に関する課題解決をサポートするためのシステムです。 こちらの企業様では見積もりAIシステムの導入を通じて、 ①新規の見積もり作成の際に必要な「過去の参考図面データ」を探すスピードが速くなり、見積もり作成時間を大幅に短縮することができた ②属人的な見積もり作成ノウハウを標準化し、熟練者以外の社員でも見積もり業務に従事することができるようになった ③社長自ら従事していた見積もり業務の時間を浮かせ、空いた時間で社長が別の高付加価値業務へ取り組むことができるようになった 等の導入効果を得ることができました。 【見積もりAIシステム導入前】 【見積もりAIシステム導入後】 AI活用の話題となると、 既存業務を「より楽に」できるようになる(=効率化) 既存業務を「より少ない人数で」できるようになる(=省人化) という主旨の話が先行しがちですが、今回ご紹介した事例の「より本質的なポイント」は単なる「効率化・省人化」の実現だけでなく、AI導入を通じて浮かせることができた社長の時間を「より高付加価値な業務」へ投資することが可能となった つまり、「社長の時間の使い方改革」を実現できたという点が、「より本質的なポイント」となります。 AI活用を通じて「社長の時間の使い方」を変えていくことで、 経営方針の策定(会社の方向付け) 設備計画の構想 その他の意思決定 等のような、「本当に社長にしかできない高付加価値な仕事」に社長が時間を使えるようになっていきます。 今回は見積もり業務を例にお伝えさせていただきましたが、読者の皆様の会社でも、 人的依存の高い業務 属人的な業務 手作業が多い業務 一部の社員に偏っている業務 熟練と勘と経験を要する業務 等が存在していないでしょうか? 本コラムが皆様の会社における「熟練技術・熟練ノウハウ・熟練スキルのDX化」の切り口を考えるきっかけとなれば幸いです。 今回ご紹介した事例の詳細についてご興味のある方は、以下のURLから是非お気軽にお問い合わせください。 ▼本コラムの内容に関するお問い合わせはこちら https://formslp.funaisoken.co.jp/form01/lp/post/inquiry-S045.html?siteno=S045   ■関連するセミナーのご案内 多品種少量生産板金加工業の為の見積もりAI!社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100000 ■開催内容 3D-CADデータを用いた高精度の類似検索!従業員数25名の工業用模型製造業におけるAI活用最新事例 2D-CAD図面とPDF図面を用いた見積もりAIシステムを導入!従業員数51名の板金加工業におけるAI活用最新事例 AI活用戦略講座編 「板金加工業経営者が取り組むべきAI活用戦略」 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/06/14 (水) 13:00~15:00 2023/06/16 (金) 13:00~15:00 2023/06/21 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100000

中堅・中小製造業のDX・IoT活用のコツ、IoT化の手順

2023.05.22

本コラムでは、中堅・中小製造業の企業におけるDX・IoT活用について、まずはどこからどの様にDX・IoTを導入していくべきか、わかりやすく説明させていただきます。 1.はじめに ここ数年、製造業においてもDX(デジタルトランスフォーメーション)やIoT(モノのインターネット)、AI(人工知能)の活用がテーマになっています。 漠然としたイメージをお持ちの状態で・・・・実際に具体的にDXやIoT、AIを活用した業務の革新や改善を実施したいと考えたとき、生産管理、在庫管理、見積もり作成、製造管理、生産工程管理等など製造業の業務は多岐にわたるため、まずどこから手をつけて良いのか?分からないのが現実だと思います。 私がその立場なら、迷わず最優先で『製造現場』へ導入します。 なぜなら、『製造現場』の革新や改善が会社の売上や利益の向上に最も直結する業務だからです。 製造業は『モノを作る企業』です。 『モノを作る』企業ですので、それを実際に行っている製造現場(工程)の状況を正確に把握(各工程の作業時間、各機器の稼働時間等)することが重要です。製造工程の状況を正確把握することは、生産性向上や品質向上、コスト削減などの多くのメリットをもたらします。 製造業では定期的に製造工程状況を正確に把握し、必要に応じて改善策を実施することが重要です。 今回は、IoTを活用した製造工程の状況把握の目的、製造工程のIoT化手順に関して説明させていただきます。 2.IoTを活用した製造工程の状況把握の目的 まずは、IoTを活用した製造工程状況把握を行う目的に付いて考えたいと思います。 主な目的として5つが考えられます。 ①リアルタイムデータ収集と分析: これがIoT化を行う一番の目的となります。 製造工程の機器や製品の状態データをリアルタイムで収集し、分析することができます。これにより、生産ラインの状況をリアルタイムに把握し、もし問題が発生した場合には早期に対処することができます。 また、これらのデータを利用して各機器の稼働率の確認、稼働待機時間を確認することによりボトルネックになっている工程を把握することもできます。 ②メンテナンスの効率化: 製造工程の機器から収集したデータを分析することで、設備の故障や劣化の予知が可能となり、メンテナンスの計画的な実施が可能になります。 これにより、メンテナンスコストの削減や生産ラインの停止時間の短縮が期待できます。 ③異常検知: 生産ラインでトラブルが発生した場合には、自動的にアラートが発生し異常を通知することが可能です。また、異常内容に合わせた最適な対処方法を提案することができます。これにより、生産ラインの停止時間を最小限に抑え、生産性を向上させることができます。 この時、タイムラグなく生産ラインを停止させるためエッジコンピューティングを活用することになります。 ④製造プロセスの改善: 製造工程中のデータをリアルタイムで収集し、分析することで、製造プロセスの改善策を導き出すことができます。これにより、生産性向上や品質向上など、製造工程全体の改善が期待できます。 ⑤製品のトレーサビリティ: 最近取引条件として管理を求められることが多くなってきている項目です。 管理製品に関する情報を収集することで、製品のトレーサビリティを確保することができます。製品の品質に問題が発生した場合、追跡が容易になり、問題の原因を特定することができます。 IoTを活用した製造工程状況把握は、製造プロセスの改善や生産性の向上、品質の向上など、 多くのメリットをもたらします。 IoTを活用した製造工程の状況把握には、高度な技術や専門知識が必要ですが、効果的に活用することで、競争力のある製品を効率よく生産することが可能になります。 次に、IoTを活用して製造工程を管理する手順をお伝えします。 3.製造工程のIoT化手順 IoTを活用して製造工程を管理するには、まずは製造工程をIoT化する必要があります。 IoTを構成する主な要素は3つです。 デバイス:各種データを取得 ネットワーク:インターネットや社内システムへ接続 プラットフォーム・アプリケーション:データを蓄積・分析する。 これらを下記手順で導入し製造工程をIoT化していきます。 ①IoTセンサーの設置: 製造工程中の機器や製品にIoTセンサーを設置することで、データのリアルタイム収集が可能になります。例えば、温度、湿度、振動、圧力、電流、電圧、位置情報などのセンサーを使用してデータを収取します。 ②ネットワークの構築: IoTセンサーから収集されたデータを集めるために、通信インフラストラクチャを構築する必要があります。製造現場での通信には、無線通信(Wi-Fi、Bluetoothなど)や有線通信(イーサネット、RS-485など)が使用されます。 ③データ収集プラットフォームの導入: IoTセンサーから収集されたデータを収集し、保存、処理するためのデータ収集プラットフォームを導入することが必要です。AWS IoT、Azure IoT、IBM Watson IoTなどを活用するケースが多いです。 ここまで導入することで製造工程の見える化が実現できます。 取得したデータの解析やさらなる活用を行う場合、以下の機能の導入の検討を行います。 ④データ解析ツールの導入: IoTセンサーから収集されたデータを解析するためのツールを導入することで、製造工程の問題点や改善点を特定することができます。 ⑤クラウドコンピューティングの活用: IoTセンサーから収集されたデータをクラウドにアップロードし、クラウドコンピューティングの力を活用することで、リアルタイムのデータ処理や解析を行うことができます。 また、リモートでの監視・管理が可能になります。 ⑥AI/機械学習の活用: IoTセンサーから収集されたデータを用いて、AIや機械学習による予測や最適化を行うことができます。例えば、異常検知や品質予測などの分野で活用されます。 この様な手順で製造工程をIoT化することにより、前述の目的を達成できます。 4.まとめ 今回のコラムでは、中堅・中小製造業のDX・IoT活用のコツ~まずどこから手をつけるか~” につきまして簡単ではありますが説明させていただきました。次回以降、それぞれの項目をより詳しく説明していく予定です。 今回の紹介した内容をご検討頂き、自社での製造工程のIoT化導入検討や、過去に断念されたIoT化を再度進めていただければ幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■関連するセミナーのご案内 「多品種少量生産板金加工業の為の原価改善!」 社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100820 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100820 多品種少量生産の塗装&外観検査工程ロボット活用!社長セミナー 「多品種少量生産の塗装加工業の社長が取り組むべきロボット戦略」 ロボットによる自動塗装で人手を増やさずに生産性を上げる! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100495 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100495 いつも当コラムをご愛読頂きましてありがとうございます。 本コラムでは、中堅・中小製造業の企業におけるDX・IoT活用について、まずはどこからどの様にDX・IoTを導入していくべきか、わかりやすく説明させていただきます。 1.はじめに ここ数年、製造業においてもDX(デジタルトランスフォーメーション)やIoT(モノのインターネット)、AI(人工知能)の活用がテーマになっています。 漠然としたイメージをお持ちの状態で・・・・実際に具体的にDXやIoT、AIを活用した業務の革新や改善を実施したいと考えたとき、生産管理、在庫管理、見積もり作成、製造管理、生産工程管理等など製造業の業務は多岐にわたるため、まずどこから手をつけて良いのか?分からないのが現実だと思います。 私がその立場なら、迷わず最優先で『製造現場』へ導入します。 なぜなら、『製造現場』の革新や改善が会社の売上や利益の向上に最も直結する業務だからです。 製造業は『モノを作る企業』です。 『モノを作る』企業ですので、それを実際に行っている製造現場(工程)の状況を正確に把握(各工程の作業時間、各機器の稼働時間等)することが重要です。製造工程の状況を正確把握することは、生産性向上や品質向上、コスト削減などの多くのメリットをもたらします。 製造業では定期的に製造工程状況を正確に把握し、必要に応じて改善策を実施することが重要です。 今回は、IoTを活用した製造工程の状況把握の目的、製造工程のIoT化手順に関して説明させていただきます。 2.IoTを活用した製造工程の状況把握の目的 まずは、IoTを活用した製造工程状況把握を行う目的に付いて考えたいと思います。 主な目的として5つが考えられます。 ①リアルタイムデータ収集と分析: これがIoT化を行う一番の目的となります。 製造工程の機器や製品の状態データをリアルタイムで収集し、分析することができます。これにより、生産ラインの状況をリアルタイムに把握し、もし問題が発生した場合には早期に対処することができます。 また、これらのデータを利用して各機器の稼働率の確認、稼働待機時間を確認することによりボトルネックになっている工程を把握することもできます。 ②メンテナンスの効率化: 製造工程の機器から収集したデータを分析することで、設備の故障や劣化の予知が可能となり、メンテナンスの計画的な実施が可能になります。 これにより、メンテナンスコストの削減や生産ラインの停止時間の短縮が期待できます。 ③異常検知: 生産ラインでトラブルが発生した場合には、自動的にアラートが発生し異常を通知することが可能です。また、異常内容に合わせた最適な対処方法を提案することができます。これにより、生産ラインの停止時間を最小限に抑え、生産性を向上させることができます。 この時、タイムラグなく生産ラインを停止させるためエッジコンピューティングを活用することになります。 ④製造プロセスの改善: 製造工程中のデータをリアルタイムで収集し、分析することで、製造プロセスの改善策を導き出すことができます。これにより、生産性向上や品質向上など、製造工程全体の改善が期待できます。 ⑤製品のトレーサビリティ: 最近取引条件として管理を求められることが多くなってきている項目です。 管理製品に関する情報を収集することで、製品のトレーサビリティを確保することができます。製品の品質に問題が発生した場合、追跡が容易になり、問題の原因を特定することができます。 IoTを活用した製造工程状況把握は、製造プロセスの改善や生産性の向上、品質の向上など、 多くのメリットをもたらします。 IoTを活用した製造工程の状況把握には、高度な技術や専門知識が必要ですが、効果的に活用することで、競争力のある製品を効率よく生産することが可能になります。 次に、IoTを活用して製造工程を管理する手順をお伝えします。 3.製造工程のIoT化手順 IoTを活用して製造工程を管理するには、まずは製造工程をIoT化する必要があります。 IoTを構成する主な要素は3つです。 デバイス:各種データを取得 ネットワーク:インターネットや社内システムへ接続 プラットフォーム・アプリケーション:データを蓄積・分析する。 これらを下記手順で導入し製造工程をIoT化していきます。 ①IoTセンサーの設置: 製造工程中の機器や製品にIoTセンサーを設置することで、データのリアルタイム収集が可能になります。例えば、温度、湿度、振動、圧力、電流、電圧、位置情報などのセンサーを使用してデータを収取します。 ②ネットワークの構築: IoTセンサーから収集されたデータを集めるために、通信インフラストラクチャを構築する必要があります。製造現場での通信には、無線通信(Wi-Fi、Bluetoothなど)や有線通信(イーサネット、RS-485など)が使用されます。 ③データ収集プラットフォームの導入: IoTセンサーから収集されたデータを収集し、保存、処理するためのデータ収集プラットフォームを導入することが必要です。AWS IoT、Azure IoT、IBM Watson IoTなどを活用するケースが多いです。 ここまで導入することで製造工程の見える化が実現できます。 取得したデータの解析やさらなる活用を行う場合、以下の機能の導入の検討を行います。 ④データ解析ツールの導入: IoTセンサーから収集されたデータを解析するためのツールを導入することで、製造工程の問題点や改善点を特定することができます。 ⑤クラウドコンピューティングの活用: IoTセンサーから収集されたデータをクラウドにアップロードし、クラウドコンピューティングの力を活用することで、リアルタイムのデータ処理や解析を行うことができます。 また、リモートでの監視・管理が可能になります。 ⑥AI/機械学習の活用: IoTセンサーから収集されたデータを用いて、AIや機械学習による予測や最適化を行うことができます。例えば、異常検知や品質予測などの分野で活用されます。 この様な手順で製造工程をIoT化することにより、前述の目的を達成できます。 4.まとめ 今回のコラムでは、中堅・中小製造業のDX・IoT活用のコツ~まずどこから手をつけるか~” につきまして簡単ではありますが説明させていただきました。次回以降、それぞれの項目をより詳しく説明していく予定です。 今回の紹介した内容をご検討頂き、自社での製造工程のIoT化導入検討や、過去に断念されたIoT化を再度進めていただければ幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   ■関連するセミナーのご案内 「多品種少量生産板金加工業の為の原価改善!」 社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100820 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100820 多品種少量生産の塗装&外観検査工程ロボット活用!社長セミナー 「多品種少量生産の塗装加工業の社長が取り組むべきロボット戦略」 ロボットによる自動塗装で人手を増やさずに生産性を上げる! セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100495 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100495

「社長の時間を生み出す」ためのAI活用

2023.04.11

1.社長の生産性アップに直結!見積もり工程のAI活用事例とは? 【AI導入企業様 サマリー】 ・従業員数:約50名 ・業種:建築用金属製品製造業 ・2DCADデータを用いた見積もりAIシステムを導入 ・社長自ら手掛けていた見積もり業務の「標準化・脱属人化・技術継承」を推進 今回ご紹介するAI導入企業様では、 見積もりAIシステムの導入を進めています。 この見積もりAIシステムは、 ①新規の見積もり作成の際に、参考となる過去の図面データを探すのに時間がかかる ②参考となる過去の図面データを探す工程が特に属人化しており、熟練者しか対応できない ③熟練者が見積もり業務以外の仕事に時間を割くことが難しい 等の「見積もり業務」に関する 課題解決をサポートするためのシステムです。 こちらの企業様では見積もりAIシステムの導入を通じて、 ①新規の見積もり作成の際に必要な「過去の参考図面データ」を探すスピードが速くなり、見積もり作成時間を大幅に短縮することができた ②属人的な見積もり作成ノウハウを標準化し、熟練者以外の社員でも見積もり業務に従事することができるようになった ③社長自ら従事していた見積もり業務の時間を浮かせ、空いた時間で社長が別の高付加価値業務へ取り組むことができるようになった 等の導入効果を得ることができました。 2.AI活用を通じて「社長の時間の使い方」を変えていく AI活用の話題となると、 既存業務を「より楽に」できるようになる(=効率化) 既存業務を「より少ない人数で」できるようになる(=省人化) という主旨の話が先行しがちですが、今回ご紹介した事例の「より本質的なポイント」は単なる「効率化・省人化」の実現だけでなく、AI導入を通じて浮かせることができた社長の時間を「より高付加価値な業務」へ投資することが可能となったつまり、「社長の時間の使い方改革」を実現できたという点が、「より本質的なポイント」となります。 AI活用を通じて「社長の時間の使い方」を変えていくことで、 経営方針の策定(会社の方向付け) 設備計画の構想 その他の意思決定 等のような、「本当に社長にしかできない仕事」に社長が時間を使えるようになっていきます。 今回は見積もり業務を例にお伝えさせていただきましたが、読者の皆様の会社でも、「社長自ら従事している“属人化業務”」が存在していないでしょうか? 本コラムが読者の社長の皆様の「仕事における時間の使い方」について、現状を振り返るきっかけとなれば幸いです。 今回ご紹介した事例の詳細についてご興味のある方は、是非お気軽にお問い合わせください。   積算・見積業務を効率化!AI活用で働き方改革 ▼事例レポート無料ダウンロードお申し込みはこちら▼ AIを活用し「積算・見積もりのドンブリ勘定」からの脱却を実現! 1、AI活用を通じた「積算・見積もり業務」の標準化・脱属人化・技術継承最新事例サマリー 2、積算・見積もりAIシステムのポイント① 3、積算・見積もりAIシステムのポイント② 4、積算・見積もりAIシステムのポイント③ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_00702   ■関連するセミナーのご案内 多品種少量生産板金加工業の為の見積もりAI!社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100000 ■開催内容 3D-CADデータを用いた高精度の類似検索!従業員数25名の工業用模型製造業におけるAI活用最新事例 2D-CAD図面とPDF図面を用いた見積もりAIシステムを導入!従業員数51名の板金加工業におけるAI活用最新事例 AI活用戦略講座編 「板金加工業経営者が取り組むべきAI活用戦略」 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/06/14 (水) 13:00~15:00 2023/06/16 (金) 13:00~15:00 2023/06/21 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100000 いつも当コラムをご愛読いただきありがとうございます。 1.社長の生産性アップに直結!見積もり工程のAI活用事例とは? 【AI導入企業様 サマリー】 ・従業員数:約50名 ・業種:建築用金属製品製造業 ・2DCADデータを用いた見積もりAIシステムを導入 ・社長自ら手掛けていた見積もり業務の「標準化・脱属人化・技術継承」を推進 今回ご紹介するAI導入企業様では、 見積もりAIシステムの導入を進めています。 この見積もりAIシステムは、 ①新規の見積もり作成の際に、参考となる過去の図面データを探すのに時間がかかる ②参考となる過去の図面データを探す工程が特に属人化しており、熟練者しか対応できない ③熟練者が見積もり業務以外の仕事に時間を割くことが難しい 等の「見積もり業務」に関する 課題解決をサポートするためのシステムです。 こちらの企業様では見積もりAIシステムの導入を通じて、 ①新規の見積もり作成の際に必要な「過去の参考図面データ」を探すスピードが速くなり、見積もり作成時間を大幅に短縮することができた ②属人的な見積もり作成ノウハウを標準化し、熟練者以外の社員でも見積もり業務に従事することができるようになった ③社長自ら従事していた見積もり業務の時間を浮かせ、空いた時間で社長が別の高付加価値業務へ取り組むことができるようになった 等の導入効果を得ることができました。 2.AI活用を通じて「社長の時間の使い方」を変えていく AI活用の話題となると、 既存業務を「より楽に」できるようになる(=効率化) 既存業務を「より少ない人数で」できるようになる(=省人化) という主旨の話が先行しがちですが、今回ご紹介した事例の「より本質的なポイント」は単なる「効率化・省人化」の実現だけでなく、AI導入を通じて浮かせることができた社長の時間を「より高付加価値な業務」へ投資することが可能となったつまり、「社長の時間の使い方改革」を実現できたという点が、「より本質的なポイント」となります。 AI活用を通じて「社長の時間の使い方」を変えていくことで、 経営方針の策定(会社の方向付け) 設備計画の構想 その他の意思決定 等のような、「本当に社長にしかできない仕事」に社長が時間を使えるようになっていきます。 今回は見積もり業務を例にお伝えさせていただきましたが、読者の皆様の会社でも、「社長自ら従事している“属人化業務”」が存在していないでしょうか? 本コラムが読者の社長の皆様の「仕事における時間の使い方」について、現状を振り返るきっかけとなれば幸いです。 今回ご紹介した事例の詳細についてご興味のある方は、是非お気軽にお問い合わせください。   積算・見積業務を効率化!AI活用で働き方改革 ▼事例レポート無料ダウンロードお申し込みはこちら▼ AIを活用し「積算・見積もりのドンブリ勘定」からの脱却を実現! 1、AI活用を通じた「積算・見積もり業務」の標準化・脱属人化・技術継承最新事例サマリー 2、積算・見積もりAIシステムのポイント① 3、積算・見積もりAIシステムのポイント② 4、積算・見積もりAIシステムのポイント③ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_00702   ■関連するセミナーのご案内 多品種少量生産板金加工業の為の見積もりAI!社長セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/100000 ■開催内容 3D-CADデータを用いた高精度の類似検索!従業員数25名の工業用模型製造業におけるAI活用最新事例 2D-CAD図面とPDF図面を用いた見積もりAIシステムを導入!従業員数51名の板金加工業におけるAI活用最新事例 AI活用戦略講座編 「板金加工業経営者が取り組むべきAI活用戦略」 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/06/14 (水) 13:00~15:00 2023/06/16 (金) 13:00~15:00 2023/06/21 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/100000

製造業のAI導入、社員がすべき5つのポイント

2023.03.22

以前、AIの導入成功のために経営陣は何をすべきかについて説明をさせていただきました。そこで今回は社員が何をすべきかについて説明させていただきます。 経営陣がAIを導入したがっているかどうかに関係なく、企業の社員は、AIの導入・活用を見据えて準備しておく必要があります。数年で定年退職という人でも、人生90年・100年時代に向けて何らかの準備をしておいた方がよいでしょう。企業社員が準備をしておくべき重要なことは次の5つです。 社員がすべき5つのポイント (1)AIリテラシーを高めるために学ぼう (2)自分が関わっている業務を分析しよう (3)既存の情報処理の流れと自身の仕事の位置づけを知ろう (4)AI導入の可能性と自分の仕事がAIに置き換えられる可能性を考えよう (5)『AI導入・活用検討チーム』に参加しよう 1.AIリテラシーを高めるために学ぼう オンラインコースやトレーニングプログラムを受講することで、AIに関する基本的な知識から応用的な知識まで、幅広く学ぶことができます。また、AIに関する書籍や記事を読むことで、AIに関する基本的な知識や最新の技術動向を学ぶことができます。AIに関するイベントやカンファレンスに参加するのもよいでしょう。そうすることで、AIに関する最新の情報を得ることができます。また、AIに関する専門家との交流や議論を通じて、深い知見を得ることができます。 2.自分が関わっている業務を分析しよう 自分が自社のどんな事業のどんな業務のどの部分を担っているかを客観的に分析してみましょう。大事なのは、会社の業務の中での自分の位置付けと役割を把握することです。自分の部門の業務手順書を見たことがあるでしょうか?顧客対応や製造業、メンテナンスなど日常的にマニュアルの参照が必要な業務に携わっている場合以外は業務手順書を読むことはあまりないでしょう。つまり、自分がどのような業務プロセスのどこに位置付けられていて、全体の中でどんな役割を担っているかを正確に把握している人はそれほど多くないということです。 3.既存の情報処理の流れと自身の仕事の位置づけを知ろう 情報処理システムやPCがどう使われているのか、既存の情報処理の流れの中で自分はどんな位置づけでどんな作業をしているのかを把握しましょう。業務の流れと情報処理の流れが適合しているのかを検討することも必要です。業務の流れを知るために可視化しましょう。そのためにはフローチャートに表すのが一番です。検索すればサンプルはたくさん出てきます。いくつかを参考にすればフローチャートを書くのは決して難しくはありません。 4.AI導入の可能性と自分の仕事がAIに置き換えられる可能性を考えよう 上記の3つをしっかり実施すれば、AI導入の可能性や自分の仕事がAIに置き換えられる可能性があるか判別できるようになります。AIの導入で最も大事なことは、早い段階で導入の目的と得られるメリット(デメリットも)について考察することです。仕事の現場での実務に精通し、分析や判断ができる人材が、今後必ず必要となってくるのです。また、もしも今の業務がAIに置き換わる可能性がある場合はこのような置き換えられない職種にシフトすることも考えましょう。 5.『AI導入・活用検討チーム』に参加しよう 上記の4つが確実に実践できれば、社内に居場所がなくなることはないでしょう。さらに望ましいのは『AI導入・活用検討チーム』に参加することです。その能動的な姿勢がきっと次のステップにつながります。これを経営陣の視点から見ると、AI導入・活用の賛否のカギは現場の社員の理解・協力にあるということです。 6.まとめ 今回のコラムでは、以前の『AIの導入成功のために経営陣は何をすべきか』の社員バージョンについて説明させていただきました。経営陣と社員で同じような内容もございますがどちらにしても今後のことを考え、AI導入に際して積極的な役割を担えるように備えることが重要です。今回紹介した内容を参考に、自社でのスムーズなAI導入のきっかけになれば幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 詳細はYoutubeにて公開しております。 https://youtu.be/H6Vq84C1Z4A https://www.funaisoken.co.jp/dl-contents/jy-ai_S045   ■多品種少量生産機械加工業のAI活用!社長セミナー 従業員30~200名の機械加工業の為の見積もりAI・生産計画AI・原価管理AIの活用! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/04/12 (水) 13:00~15:00 2023/04/17 (月) 13:00~15:00 2023/04/19 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 いつも当コラムをご愛読いただきありがとうございます。 以前、AIの導入成功のために経営陣は何をすべきかについて説明をさせていただきました。そこで今回は社員が何をすべきかについて説明させていただきます。 経営陣がAIを導入したがっているかどうかに関係なく、企業の社員は、AIの導入・活用を見据えて準備しておく必要があります。数年で定年退職という人でも、人生90年・100年時代に向けて何らかの準備をしておいた方がよいでしょう。企業社員が準備をしておくべき重要なことは次の5つです。 社員がすべき5つのポイント (1)AIリテラシーを高めるために学ぼう (2)自分が関わっている業務を分析しよう (3)既存の情報処理の流れと自身の仕事の位置づけを知ろう (4)AI導入の可能性と自分の仕事がAIに置き換えられる可能性を考えよう (5)『AI導入・活用検討チーム』に参加しよう 1.AIリテラシーを高めるために学ぼう オンラインコースやトレーニングプログラムを受講することで、AIに関する基本的な知識から応用的な知識まで、幅広く学ぶことができます。また、AIに関する書籍や記事を読むことで、AIに関する基本的な知識や最新の技術動向を学ぶことができます。AIに関するイベントやカンファレンスに参加するのもよいでしょう。そうすることで、AIに関する最新の情報を得ることができます。また、AIに関する専門家との交流や議論を通じて、深い知見を得ることができます。 2.自分が関わっている業務を分析しよう 自分が自社のどんな事業のどんな業務のどの部分を担っているかを客観的に分析してみましょう。大事なのは、会社の業務の中での自分の位置付けと役割を把握することです。自分の部門の業務手順書を見たことがあるでしょうか?顧客対応や製造業、メンテナンスなど日常的にマニュアルの参照が必要な業務に携わっている場合以外は業務手順書を読むことはあまりないでしょう。つまり、自分がどのような業務プロセスのどこに位置付けられていて、全体の中でどんな役割を担っているかを正確に把握している人はそれほど多くないということです。 3.既存の情報処理の流れと自身の仕事の位置づけを知ろう 情報処理システムやPCがどう使われているのか、既存の情報処理の流れの中で自分はどんな位置づけでどんな作業をしているのかを把握しましょう。業務の流れと情報処理の流れが適合しているのかを検討することも必要です。業務の流れを知るために可視化しましょう。そのためにはフローチャートに表すのが一番です。検索すればサンプルはたくさん出てきます。いくつかを参考にすればフローチャートを書くのは決して難しくはありません。 4.AI導入の可能性と自分の仕事がAIに置き換えられる可能性を考えよう 上記の3つをしっかり実施すれば、AI導入の可能性や自分の仕事がAIに置き換えられる可能性があるか判別できるようになります。AIの導入で最も大事なことは、早い段階で導入の目的と得られるメリット(デメリットも)について考察することです。仕事の現場での実務に精通し、分析や判断ができる人材が、今後必ず必要となってくるのです。また、もしも今の業務がAIに置き換わる可能性がある場合はこのような置き換えられない職種にシフトすることも考えましょう。 5.『AI導入・活用検討チーム』に参加しよう 上記の4つが確実に実践できれば、社内に居場所がなくなることはないでしょう。さらに望ましいのは『AI導入・活用検討チーム』に参加することです。その能動的な姿勢がきっと次のステップにつながります。これを経営陣の視点から見ると、AI導入・活用の賛否のカギは現場の社員の理解・協力にあるということです。 6.まとめ 今回のコラムでは、以前の『AIの導入成功のために経営陣は何をすべきか』の社員バージョンについて説明させていただきました。経営陣と社員で同じような内容もございますがどちらにしても今後のことを考え、AI導入に際して積極的な役割を担えるように備えることが重要です。今回紹介した内容を参考に、自社でのスムーズなAI導入のきっかけになれば幸いです。また、上記内容について、より具体的に詳細をお知りになりたい場合や導入支援が必要といった場合は、お気軽に弊社にご相談いただければ幸いです。 最後までお読みいただきありがとうございました。   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 詳細はYoutubeにて公開しております。 https://youtu.be/H6Vq84C1Z4A https://www.funaisoken.co.jp/dl-contents/jy-ai_S045   ■多品種少量生産機械加工業のAI活用!社長セミナー 従業員30~200名の機械加工業の為の見積もりAI・生産計画AI・原価管理AIの活用! お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/04/12 (水) 13:00~15:00 2023/04/17 (月) 13:00~15:00 2023/04/19 (水) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096847

製造業でAIは本当に役立つのか?AI活用のメリット・事例を徹底解説

2023.03.17

▼事例レポート無料ダウンロードお申し込みはこちら▼ 近年、AIの進化は著しく、中堅・中小製造業においてもAIの導入が注目されています。しかしながら、中堅・中小企業の中には、AIの導入が本当に役立つのかについて疑問をお持ちの方もいらっしゃるかもしれません。 本記事では、中堅・中小製造業でAIがどのように活用されているのかについて解説し、そのメリットや事例についてもご紹介いたします。 1.中堅・中小製造業でAIは本当に役立つのか? 昨今、大きな注目を集めている「Chat GPT (チャットジーピーティー)」をはじめとして、日本国内でもAI活用の話題が取り上げられる機会が増えてきました。 しかしながら、「AI」という言葉を聞いてもまだまだ漠然としたイメージしか湧かず、 「AIって本当に役に立つのか?」 と懐疑的な態度をとられる方も少なくないかと思います。 また、「AI」という言葉が頻度高く取り上げられている近頃の流れについて、 「単なる一時的なブームに過ぎないのではないか?」 「AIなんて、ウチの会社には無関係な話だろう」というように、実際には中堅・中小製造業に携わる多くの方々にとって、AIを実用化するイメージを持つこと自体がまだまだ難しい状況にあるのかもしれません。 そのような方々にとって少しでも参考になればと思い、本コラムでは、 「中堅・中小製造業においてどのようなケースでAIが使われているか?」 「AIが果たす役割として、どのような事例があるのか?」 について、以下簡単に概要をご紹介させていただきます。 2.中堅・中小製造業でのAI導入のメリット 中堅・中小製造業でのAI導入により、以下のような3つのメリットを得ることができます。 1.コスト削減・.生産性の向上 AIの活用により、業務の効率化が進み、コスト削減や生産性向上が実現できるとされています。AIはヒューマンエラーや部品ロスを削減し、製品の返品と手直しにかかる費用を削減することができます。さらに、課題の明確化や数値目標の設定が容易になり、現場との合意形成も円滑に進むでしょう。 2.製品の品質向上 AIを活用した精密なデータ分析により、製品の品質管理が容易になります。製造過程での異常を早期に検知し、品質のばらつきを抑えることで、高品質な製品を一貫して提供することが可能です。 3.安全性の向上 AIを導入することで、危険な作業や環境の監視が自動化され、労働者の安全性が向上します。また、製造現場のリスクを予測・防止するAIシステムの導入により、事故やトラブルのリスクを最小限に抑えることができます。 これらのメリットによって、中堅・中小製造業は競争力の強化や持続的な成長に向けて大きな前進を遂げることが期待されます。ただし、AI導入に際しては適切なシステムやパートナー企業の選定、従業員の教育・トレーニングなども重要な要素となります。 3.【事例】 AI活用を通じて「見積もり業務の標準化・脱属人化・技術継承」を推進 中堅・中小製造業の企業様における見積もり作成業務のスピードアップに関する事例 この製造業の企業様では、一部のベテラン営業担当者と社長自ら見積もり業務に従事していた。 そのような中で、新規の見積もり算出の参考として使用する「過去の2D図面データ」を探し出す作業に多くの時間を取られていた。加えて、「過去の2D図面データ」を探し出す作業自体が属人化していた。 見積もり作成の際に大幅に時間がかかっていた「過去の2D図面データを探し出す工程」にAIを活用。 新規の見積もり依頼先より頂いた2D図面データからAIが図面に含まれる形状と特徴を解析し、システム内の2D図面データベースから類似の図面・形状を検索。 AIを活用し、過去の類似2D図面データを検索できるようにすることで、「従来かかっていた時間よりも短い時間で」かつ「より精度高く」見積もり作成を行うことが可能となった。 また、一部のベテランに依存していた見積もり業務を、知識・経験の浅い社員でも問題なく実践できるようになった。 (⇒業務の標準化・脱属人化・熟練技術の継承を推進) <取り組みのポイント> 業務の標準化を通じた若手社員の即戦力化 「社長やベテランじゃなくてもできる仕事」は、社長やベテラン以外の人間に任せる 熟練者は空いた時間で、より高付加価値な業務に従事してもらう 高齢化に伴い引退を控えるベテラン担当者の技術をAIが継承 <Before(AI導入前の状態と主な課題)> <After(AI導入後の主な課題解決効果)> 3.【事例】AIを活用し、生産計画作成業務の脱属人化を推進 生産計画作成体制に課題を抱えていた中堅・中小製造業の企業様の事例。 <Before(AI導入前の状態と主な課題)> この製造業の企業様における生産計画(工程計画)は複雑で難解になっており、生産計画作成には多面的な知識と豊富な経験が必要であった。 また、その生産計画の作成は一握りのスタッフの“勘と経験”に依存しており、そのスタッフの工数は相当多く、過度な業務負荷がかかっていた。 良く言えば、名人芸を持った優秀なスタッフだが、悪く言えば、生産計画作成ノウハウが「ブラックボックス化」してしまい、社長はそのスタッフの判断と考え方を信用するしかなかった。 <After(AI導入後の主な課題解決効果)> 「設備」「材料」「在庫」「納期」等の各種条件・ルールや優先順位に応じて、AIが自動で最適な生産計画を立案。 AIが複数の生産計画パターンをシミュレーション&比較し、その時々に応じて最適な生産計画表を自動で出力 結果として、熟練者の工数削減と生産計画作成業務の脱属人化を実現できるようになった。 <取り組みのポイント> 「その道数十年」のベテラン担当者に依存した現場体制から脱却 生産計画作成業務の「自動化・標準化・脱属人化・技術継承」を実現 システムが生産計画の大半を自動で立案するため、ヒトが作る生産計画よりも厳しめの生産計画が立案される(バッファーが縮まる) ⇒結果として、生産効率アップに繋がる(生産性が上がる) 以上、「中堅・中小製造業でAIは本当に役立つのか?」 というテーマでお伝えさせていただきました。 今回ご紹介した事例の詳細についてご興味のある方は、 是非お気軽にお問い合わせください。   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 https://www.funaisoken.co.jp/dl-contents/jy-ai_S045 ▼事例レポート無料ダウンロードお申し込みはこちら▼ いつも当コラムをご愛読いただきありがとうございます。 近年、AIの進化は著しく、中堅・中小製造業においてもAIの導入が注目されています。しかしながら、中堅・中小企業の中には、AIの導入が本当に役立つのかについて疑問をお持ちの方もいらっしゃるかもしれません。 本記事では、中堅・中小製造業でAIがどのように活用されているのかについて解説し、そのメリットや事例についてもご紹介いたします。 1.中堅・中小製造業でAIは本当に役立つのか? 昨今、大きな注目を集めている「Chat GPT (チャットジーピーティー)」をはじめとして、日本国内でもAI活用の話題が取り上げられる機会が増えてきました。 しかしながら、「AI」という言葉を聞いてもまだまだ漠然としたイメージしか湧かず、 「AIって本当に役に立つのか?」 と懐疑的な態度をとられる方も少なくないかと思います。 また、「AI」という言葉が頻度高く取り上げられている近頃の流れについて、 「単なる一時的なブームに過ぎないのではないか?」 「AIなんて、ウチの会社には無関係な話だろう」というように、実際には中堅・中小製造業に携わる多くの方々にとって、AIを実用化するイメージを持つこと自体がまだまだ難しい状況にあるのかもしれません。 そのような方々にとって少しでも参考になればと思い、本コラムでは、 「中堅・中小製造業においてどのようなケースでAIが使われているか?」 「AIが果たす役割として、どのような事例があるのか?」 について、以下簡単に概要をご紹介させていただきます。 2.中堅・中小製造業でのAI導入のメリット 中堅・中小製造業でのAI導入により、以下のような3つのメリットを得ることができます。 1.コスト削減・.生産性の向上 AIの活用により、業務の効率化が進み、コスト削減や生産性向上が実現できるとされています。AIはヒューマンエラーや部品ロスを削減し、製品の返品と手直しにかかる費用を削減することができます。さらに、課題の明確化や数値目標の設定が容易になり、現場との合意形成も円滑に進むでしょう。 2.製品の品質向上 AIを活用した精密なデータ分析により、製品の品質管理が容易になります。製造過程での異常を早期に検知し、品質のばらつきを抑えることで、高品質な製品を一貫して提供することが可能です。 3.安全性の向上 AIを導入することで、危険な作業や環境の監視が自動化され、労働者の安全性が向上します。また、製造現場のリスクを予測・防止するAIシステムの導入により、事故やトラブルのリスクを最小限に抑えることができます。 これらのメリットによって、中堅・中小製造業は競争力の強化や持続的な成長に向けて大きな前進を遂げることが期待されます。ただし、AI導入に際しては適切なシステムやパートナー企業の選定、従業員の教育・トレーニングなども重要な要素となります。 3.【事例】 AI活用を通じて「見積もり業務の標準化・脱属人化・技術継承」を推進 中堅・中小製造業の企業様における見積もり作成業務のスピードアップに関する事例 この製造業の企業様では、一部のベテラン営業担当者と社長自ら見積もり業務に従事していた。 そのような中で、新規の見積もり算出の参考として使用する「過去の2D図面データ」を探し出す作業に多くの時間を取られていた。加えて、「過去の2D図面データ」を探し出す作業自体が属人化していた。 見積もり作成の際に大幅に時間がかかっていた「過去の2D図面データを探し出す工程」にAIを活用。 新規の見積もり依頼先より頂いた2D図面データからAIが図面に含まれる形状と特徴を解析し、システム内の2D図面データベースから類似の図面・形状を検索。 AIを活用し、過去の類似2D図面データを検索できるようにすることで、「従来かかっていた時間よりも短い時間で」かつ「より精度高く」見積もり作成を行うことが可能となった。 また、一部のベテランに依存していた見積もり業務を、知識・経験の浅い社員でも問題なく実践できるようになった。 (⇒業務の標準化・脱属人化・熟練技術の継承を推進) <取り組みのポイント> 業務の標準化を通じた若手社員の即戦力化 「社長やベテランじゃなくてもできる仕事」は、社長やベテラン以外の人間に任せる 熟練者は空いた時間で、より高付加価値な業務に従事してもらう 高齢化に伴い引退を控えるベテラン担当者の技術をAIが継承 <Before(AI導入前の状態と主な課題)> <After(AI導入後の主な課題解決効果)> 3.【事例】AIを活用し、生産計画作成業務の脱属人化を推進 生産計画作成体制に課題を抱えていた中堅・中小製造業の企業様の事例。 <Before(AI導入前の状態と主な課題)> この製造業の企業様における生産計画(工程計画)は複雑で難解になっており、生産計画作成には多面的な知識と豊富な経験が必要であった。 また、その生産計画の作成は一握りのスタッフの“勘と経験”に依存しており、そのスタッフの工数は相当多く、過度な業務負荷がかかっていた。 良く言えば、名人芸を持った優秀なスタッフだが、悪く言えば、生産計画作成ノウハウが「ブラックボックス化」してしまい、社長はそのスタッフの判断と考え方を信用するしかなかった。 <After(AI導入後の主な課題解決効果)> 「設備」「材料」「在庫」「納期」等の各種条件・ルールや優先順位に応じて、AIが自動で最適な生産計画を立案。 AIが複数の生産計画パターンをシミュレーション&比較し、その時々に応じて最適な生産計画表を自動で出力 結果として、熟練者の工数削減と生産計画作成業務の脱属人化を実現できるようになった。 <取り組みのポイント> 「その道数十年」のベテラン担当者に依存した現場体制から脱却 生産計画作成業務の「自動化・標準化・脱属人化・技術継承」を実現 システムが生産計画の大半を自動で立案するため、ヒトが作る生産計画よりも厳しめの生産計画が立案される(バッファーが縮まる) ⇒結果として、生産効率アップに繋がる(生産性が上がる) 以上、「中堅・中小製造業でAIは本当に役立つのか?」 というテーマでお伝えさせていただきました。 今回ご紹介した事例の詳細についてご興味のある方は、 是非お気軽にお問い合わせください。   無料ダウンロード!!2024年AI活用時流予測レポート ~今後の業界動向・トレンドを予測~ ▼事例レポート無料ダウンロードお申し込みはこちら▼ 目次 1、製造業AI業界の現状 2、2023年製造業AI業界はこうなる! 3、2023年実践していただきたいこと 4、どの業務・工程でもAIは活用できる「業務別・工程別のAI活用」 5、国内中小製造業におけるAI導入事例 中小製造業のAI活用の最新事例と導入事例この1冊にまとめました。 AI活用術について「考え方」と「具体的な方法」を例を出して解説し、さらに導入事例を掲載することでAI活用の具体的な取り組み方が分かる資料になっております。 https://www.funaisoken.co.jp/dl-contents/jy-ai_S045

事業再構築補助金2023年変更点と製造業の活用事例

2023.03.17

中小製造業において投資における補助金活用は経営に直結する重要な要素です。 事業再構築補助金が2023年度も継続することが決定しました。 事業再構築補助金の今年度の変更点と成功事例を中心に解説していきます。 1.事業再構築補助金とは 事業再構築補助金とは、新型コロナウイルス感染症の影響によって経営が困難になった中小企業等に対して、事業再構築のための支援を行うために、国が設けた補助金制度です。 具体的には、以下のような事業再構築に必要な取り組みにかかる費用が対象となります。 生産プロセスの変革や設備の改善 商品・サービスの開発・改良 ITシステムの改善・導入 新規事業の開発・展開 補助額は、事業者の経営状況や補助対象となる取り組み内容によって異なりますが、最大で1億円まで支給されることがあります。 2.2023年度の変更点 まず、大きな変更点として売上高減少要件が無くなりました。 成長枠(旧通常枠)では以前までは売上高減少要件があったため、業績が好調な企業は申請できませんでしたが今回の売上高減少要件の撤廃により、ほとんどの中小企業・中堅企業が申し込みできるようになりました。 売上高減少要件を満していない業績が好調な企業でも補助金を受け取れる可能性がグッと高まりました。 補助額と補助率は以下の通りです。 ■補助額 中小企業者等、中堅企業等ともに 【従業員数20人以下】100万円~2,000万円 【従業員数21~50人】100万円~4,000万円 【従業員数51~100人】100万円~6,000万円 【従業員数101人以上】100万円~7,000万円 ■補助率 中小企業者等 1/2 中堅企業等 1/3 成長枠(旧通常枠)の他にも様々な枠があります。 緊急対策枠 回復・再生応援枠 最低賃金枠 産業構造転換枠(新設) サプライチェーン強靱化枠(新設) グリーン成長枠(要件緩和) 自社に適合した枠を見極めて申請する必要があります。 ここまでお読み頂いた皆様はどのように感じるでしょうか? 「よく分からない、、」 「面倒、、」 「本当に補助金がもらえるの?」 ここからは実際に事業再構築補助金を活用して大きな投資をした2社の事例を ご紹介します。 3.事業再構築補助金を活用してロボットを導入した成功事例 ①茨城県D社 ■投資と補助額 ・投資金額 約5000万円 ・補助額 約3000万円 ■システムの概要 ・幅広い寸法 長さ200㎜~5000㎜ 径20A ~300A の様々な形状の配管TIG溶接をロボットによって自動化するロボットシステムを事業再構築補助金を活用して導入。 溶接職人による難しい配管溶接を最新技術を駆使してロボット化に成功した事例。 ②長野県C社 ■投資と補助額 ・投資金額 約8000万円 ・補助額 約4000万円 ■システムの概要 多品種のステンレス製板金製品のおける溶接と研磨をロボットで自動化。 水漏れが許されない高品質な溶接と、職人の研磨による外観品質をロボットで実現した事例。 4.事業再構築補助金を活用する方法 補助金の申請は非常に面倒です。 ■申請書類の作成 申請者は申請書類を作成します。申請書類には、事業再構築のための計画書や費用詳細書、財務諸表などが含まれます。 ■オンライン申請 申請書類を作成したら、オンラインで申請手続きを行います。申請者は、事業再構築補助金の公式サイトから「マイページ」にログインし、必要事項を入力して申請書類をアップロードします。もちろん事前のID登録が必要です。 ■審査 申請書類の提出後、専門家が審査を行います。審査内容は、申請書類に記載された計画書や財務諸表、補助対象となる取り組み内容の妥当性などが審査されます。 申請書類の書き方で審査結果(採択率)は大きく変わります。 大きくはこの3つの流れです。 まずはIDの登録です。 ここで躓くようでは補助金採択までの道のりは果てしなく遠いでしょう。 そして、申請書の作成です。 必要な書類は、 事業計画書 認定支援機関の確認書(3,000万円以上の場合は金融機関の確認書も必要) 売上高減少に関する書類 決算書 ミラサポplus「電子申請サポート」の事業財務情報(ローカルベンチマークともいう) 従業員数を示す書類 緊急事態宣言の影響を受けたことの宣誓(緊急事態宣言枠のみ) 緊急事態宣言による売上高減少に関する書類(緊急事態宣言枠のみ) 固定費が協力金を上回っていることを証明する書類(緊急事態宣言枠のみ) 加点に必要な書類 海外事業の準備状況を示す書類(卒業枠、グローバルV字回復枠のみ) 数ある補助金の中でもトップクラスに必要な書類が多いといえるでしょう。 事業計画書は、事業再構築のための具体的な計画をまとめた書類です。再構築の必要性、再構築の目的や方針、再構築後のビジョンや目標、取り組み内容やスケジュールなどが含まれます。 これらを一人で準備するのは忙しい経営者にとって非常に困難といえます。 補助金活用においても、専門のコンサルタントに依頼し採択率を高め、手間を減らすような取り組みが必要です。   ■関連するセミナーのご案内 【従業員200~1,500名製造業の基幹システム再構築戦略!】 受発注管理・仕入販売在庫管理・生産管理・原価管理・総務人事管理・会計管理、企業全体のシステムを再構築!経営者セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/096707 ■このような方にオススメ 従業員200~1,500名の製造業の経営者様 製造現場では現在でも紙帳票に依存していて電子帳票化やデジタル化が遅れている経営者様 受発注・仕入販売在庫・生産管理・原価管理・総務人事・会計管理等のシステムがバラバラに動いている経営者様 既存の基幹システムが15年以上前の古いシステムで現在の経営状態に適合していない経営者様 特に、生産管理・工程管理・原価管理がDX化されていないと感じている経営者様 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/03/27 (月)13:00~15:00 2023/03/28 (火)13:00~15:00 2023/03/29 (水)13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096707   【製造業】経営者向け!!工場の協働ロボット活用成功事例集 ▼事例レポート無料ダウンロードお申し込みはこちら▼ 中小製造業のロボット活用は協働ロボットが主流になる! 中小製造業が実践すべき協働ロボット活用のポイントと具体的な方法を解説! さらに、実際の中小製造業における協働ロボット活用成功事例をこの1冊にまとめました! https://www.funaisoken.co.jp/dl-contents/jy-core-system_S045 いつも当コラムをご愛読いただきありがとうございます。 中小製造業において投資における補助金活用は経営に直結する重要な要素です。 事業再構築補助金が2023年度も継続することが決定しました。 事業再構築補助金の今年度の変更点と成功事例を中心に解説していきます。 1.事業再構築補助金とは 事業再構築補助金とは、新型コロナウイルス感染症の影響によって経営が困難になった中小企業等に対して、事業再構築のための支援を行うために、国が設けた補助金制度です。 具体的には、以下のような事業再構築に必要な取り組みにかかる費用が対象となります。 生産プロセスの変革や設備の改善 商品・サービスの開発・改良 ITシステムの改善・導入 新規事業の開発・展開 補助額は、事業者の経営状況や補助対象となる取り組み内容によって異なりますが、最大で1億円まで支給されることがあります。 2.2023年度の変更点 まず、大きな変更点として売上高減少要件が無くなりました。 成長枠(旧通常枠)では以前までは売上高減少要件があったため、業績が好調な企業は申請できませんでしたが今回の売上高減少要件の撤廃により、ほとんどの中小企業・中堅企業が申し込みできるようになりました。 売上高減少要件を満していない業績が好調な企業でも補助金を受け取れる可能性がグッと高まりました。 補助額と補助率は以下の通りです。 ■補助額 中小企業者等、中堅企業等ともに 【従業員数20人以下】100万円~2,000万円 【従業員数21~50人】100万円~4,000万円 【従業員数51~100人】100万円~6,000万円 【従業員数101人以上】100万円~7,000万円 ■補助率 中小企業者等 1/2 中堅企業等 1/3 成長枠(旧通常枠)の他にも様々な枠があります。 緊急対策枠 回復・再生応援枠 最低賃金枠 産業構造転換枠(新設) サプライチェーン強靱化枠(新設) グリーン成長枠(要件緩和) 自社に適合した枠を見極めて申請する必要があります。 ここまでお読み頂いた皆様はどのように感じるでしょうか? 「よく分からない、、」 「面倒、、」 「本当に補助金がもらえるの?」 ここからは実際に事業再構築補助金を活用して大きな投資をした2社の事例を ご紹介します。 3.事業再構築補助金を活用してロボットを導入した成功事例 ①茨城県D社 ■投資と補助額 ・投資金額 約5000万円 ・補助額 約3000万円 ■システムの概要 ・幅広い寸法 長さ200㎜~5000㎜ 径20A ~300A の様々な形状の配管TIG溶接をロボットによって自動化するロボットシステムを事業再構築補助金を活用して導入。 溶接職人による難しい配管溶接を最新技術を駆使してロボット化に成功した事例。 ②長野県C社 ■投資と補助額 ・投資金額 約8000万円 ・補助額 約4000万円 ■システムの概要 多品種のステンレス製板金製品のおける溶接と研磨をロボットで自動化。 水漏れが許されない高品質な溶接と、職人の研磨による外観品質をロボットで実現した事例。 4.事業再構築補助金を活用する方法 補助金の申請は非常に面倒です。 ■申請書類の作成 申請者は申請書類を作成します。申請書類には、事業再構築のための計画書や費用詳細書、財務諸表などが含まれます。 ■オンライン申請 申請書類を作成したら、オンラインで申請手続きを行います。申請者は、事業再構築補助金の公式サイトから「マイページ」にログインし、必要事項を入力して申請書類をアップロードします。もちろん事前のID登録が必要です。 ■審査 申請書類の提出後、専門家が審査を行います。審査内容は、申請書類に記載された計画書や財務諸表、補助対象となる取り組み内容の妥当性などが審査されます。 申請書類の書き方で審査結果(採択率)は大きく変わります。 大きくはこの3つの流れです。 まずはIDの登録です。 ここで躓くようでは補助金採択までの道のりは果てしなく遠いでしょう。 そして、申請書の作成です。 必要な書類は、 事業計画書 認定支援機関の確認書(3,000万円以上の場合は金融機関の確認書も必要) 売上高減少に関する書類 決算書 ミラサポplus「電子申請サポート」の事業財務情報(ローカルベンチマークともいう) 従業員数を示す書類 緊急事態宣言の影響を受けたことの宣誓(緊急事態宣言枠のみ) 緊急事態宣言による売上高減少に関する書類(緊急事態宣言枠のみ) 固定費が協力金を上回っていることを証明する書類(緊急事態宣言枠のみ) 加点に必要な書類 海外事業の準備状況を示す書類(卒業枠、グローバルV字回復枠のみ) 数ある補助金の中でもトップクラスに必要な書類が多いといえるでしょう。 事業計画書は、事業再構築のための具体的な計画をまとめた書類です。再構築の必要性、再構築の目的や方針、再構築後のビジョンや目標、取り組み内容やスケジュールなどが含まれます。 これらを一人で準備するのは忙しい経営者にとって非常に困難といえます。 補助金活用においても、専門のコンサルタントに依頼し採択率を高め、手間を減らすような取り組みが必要です。   ■関連するセミナーのご案内 【従業員200~1,500名製造業の基幹システム再構築戦略!】 受発注管理・仕入販売在庫管理・生産管理・原価管理・総務人事管理・会計管理、企業全体のシステムを再構築!経営者セミナー セミナー詳細・申込はこちらから https://www.funaisoken.co.jp/seminar/096707 ■このような方にオススメ 従業員200~1,500名の製造業の経営者様 製造現場では現在でも紙帳票に依存していて電子帳票化やデジタル化が遅れている経営者様 受発注・仕入販売在庫・生産管理・原価管理・総務人事・会計管理等のシステムがバラバラに動いている経営者様 既存の基幹システムが15年以上前の古いシステムで現在の経営状態に適合していない経営者様 特に、生産管理・工程管理・原価管理がDX化されていないと感じている経営者様 ■開催日程 全てオンライン開催となります 以下の日程よりご都合の良い日程をお選び下さい ※内容は全て一緒です 2023/03/27 (月)13:00~15:00 2023/03/28 (火)13:00~15:00 2023/03/29 (水)13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/096707   【製造業】経営者向け!!工場の協働ロボット活用成功事例集 ▼事例レポート無料ダウンロードお申し込みはこちら▼ 中小製造業のロボット活用は協働ロボットが主流になる! 中小製造業が実践すべき協働ロボット活用のポイントと具体的な方法を解説! さらに、実際の中小製造業における協働ロボット活用成功事例をこの1冊にまとめました! https://www.funaisoken.co.jp/dl-contents/jy-core-system_S045

製造業のDX事例研究会4月開催のお知らせ

2023.03.17

2023年の経営計画・方針は、もう固まりましたでしょうか。 中には、1度決めたものの本当にこれでよいのかと悩まれている方や、今後も外部・内部環境ともに目まぐるしく変化することを想像し、的確に課題を解決していけるか不安を抱く方もいらっしゃるかと思います。 船井総研では、そのような悩み、不安、そして高い志を持つ経営者様同士が、共に学び・相談しあえる師と友となり、経営課題を解決し業績向上を目指す会員制勉強会を開催しています。 製造業の皆様には、「ものづくり経営研究会 スマートファクトリー経営部会」をおすすめいたします。 DX事例研究会【4月18日(火) WEB開催】 【日程】2023年4月18日(火) 【時間】13:00~16:00(※12:30より受付開始予定) (※約3時間で効率的に業界の最新情報・最新事例を収集していただくことができます) 【開催方式】LIVE配信型 パソコン1台でお好きな場所からご参加いただくことができます。 通信環境の整った静かな集中できる場所でご参加ください。 【第1講座】 4000万円の補助金を獲得して職人技術のTIG溶接と研磨をロボット化した成功事例講座 【講座の概要を一部先行公開!】 ◆超大型投資を補助金を最大限活用してコストを抑えたポイントを解説 ◆多品種対応のための「あえて」シンプルなシステムと治具構想とは ◆工数がかかる外観部分のバフ研磨をロボットで実現するための方法とは ◆社長から次世代へ、技術継承のカギとなる今後のロボット活用 【第2講座】 「従業員数30名台の機械メーカーが取り組む”攻めと守りの基幹システム”導入事例とは?」 【講座の概要を一部先行公開!】 基幹システム導入企業の代表取締役による特別講演! 幹システム導入のBefore/Afterを大公開! BI連携を通じて「各種数字の見える化」を実現! 基幹システムを活用した「アフターサービスの見える化」とは? 【第3講座】 ”2023年最新版” 補助金獲得分析データのご紹介&本日のまとめ講座 【講座の概要を一部先行公開!】 ◆2022年製造業界補助金獲得データ分析特集! ◆2023年製造業界の時流キーワード! ◆経営者として肝に銘じておきたいこと!   ■製造業におけるDX最新事例研究会 ▼研究会のお申し込みはこちら▼ https://lpsec.funaisoken.co.jp/study/smart-factory/047708/   製造業DX事例研究会の詳細はYouTubeからご覧いただけます https://youtu.be/ZAoxKaVOnwQ お申し込みはこちらから⇒ https://lpsec.funaisoken.co.jp/study/smart-factory/047708/   いつも当コラムをお読みいただきましてありがとうございます。 2023年の経営計画・方針は、もう固まりましたでしょうか。 中には、1度決めたものの本当にこれでよいのかと悩まれている方や、今後も外部・内部環境ともに目まぐるしく変化することを想像し、的確に課題を解決していけるか不安を抱く方もいらっしゃるかと思います。 船井総研では、そのような悩み、不安、そして高い志を持つ経営者様同士が、共に学び・相談しあえる師と友となり、経営課題を解決し業績向上を目指す会員制勉強会を開催しています。 製造業の皆様には、「ものづくり経営研究会 スマートファクトリー経営部会」をおすすめいたします。 DX事例研究会【4月18日(火) WEB開催】 【日程】2023年4月18日(火) 【時間】13:00~16:00(※12:30より受付開始予定) (※約3時間で効率的に業界の最新情報・最新事例を収集していただくことができます) 【開催方式】LIVE配信型 パソコン1台でお好きな場所からご参加いただくことができます。 通信環境の整った静かな集中できる場所でご参加ください。 【第1講座】 4000万円の補助金を獲得して職人技術のTIG溶接と研磨をロボット化した成功事例講座 【講座の概要を一部先行公開!】 ◆超大型投資を補助金を最大限活用してコストを抑えたポイントを解説 ◆多品種対応のための「あえて」シンプルなシステムと治具構想とは ◆工数がかかる外観部分のバフ研磨をロボットで実現するための方法とは ◆社長から次世代へ、技術継承のカギとなる今後のロボット活用 【第2講座】 「従業員数30名台の機械メーカーが取り組む”攻めと守りの基幹システム”導入事例とは?」 【講座の概要を一部先行公開!】 基幹システム導入企業の代表取締役による特別講演! 幹システム導入のBefore/Afterを大公開! BI連携を通じて「各種数字の見える化」を実現! 基幹システムを活用した「アフターサービスの見える化」とは? 【第3講座】 ”2023年最新版” 補助金獲得分析データのご紹介&本日のまとめ講座 【講座の概要を一部先行公開!】 ◆2022年製造業界補助金獲得データ分析特集! ◆2023年製造業界の時流キーワード! ◆経営者として肝に銘じておきたいこと!   ■製造業におけるDX最新事例研究会 ▼研究会のお申し込みはこちら▼ https://lpsec.funaisoken.co.jp/study/smart-factory/047708/   製造業DX事例研究会の詳細はYouTubeからご覧いただけます https://youtu.be/ZAoxKaVOnwQ お申し込みはこちらから⇒ https://lpsec.funaisoken.co.jp/study/smart-factory/047708/