DX CONSULTING COLUMN 工場DXコンサルティングコラム

専門コンサルタントが執筆するAI・ロボットコラム
最新のAI・ロボット技術に精通したコンサルタントによる定期コラム

製造業の補助金採択を獲得するために必要なポイント! 経営者自ら補助金に取り組むべき理由

2022.09.16

補助金は中小企業の経営になくてはならない存在です。 ものづくり補助金を活用して最新加工機やロボット設備を入れることをされる経営者の皆様は多いと思います。 また最近ではデジタル枠もでてきました。今回は、補助金採択のポイントを解説していきます。 1.自身の会社と今一度向き合おう! 補助金申請の内容は一番自社のことを分かっている経営者が、自身の会社を経営するにあたっての基本的な考え方が凝縮されています。 ものづくり補助金の、よくある書き方を一例にしますと下記になるかと思います。 ①あなたの会社はどんな会社ですか? ②あなたの会社の強みは何ですか? ③今回補助金を申請するのは何故ですか?  解決したい課題の背景と目的 ④あなたはどんな社内体制で課題に立ち向かいますか? ⑤解決したい課題はどのような技術的な課題がありますか? ⑥解決したい課題をどのような“新”技術で解決しますか? ⑦解決したい課題を解決することでどのような優位性が生まれますか? ⑧解決したい課題は世の中のどのような課題とマッチしていると思いますか? ⑨課題が解決することで、どのような市場でどういう結果を残せそうですか? ⑩課題を解決するためのスケジュールは? 補助金の要綱に照らし合わせながら書く必要がありますが大まかにこのような内容となります。 補助金で求められる内容は基礎的な項目だと考えます。発展的な内容は技術的な項目だけで非常に基礎的な内容です。 なので、自身の会社をしっかり分析して経営の基礎さえ押さえていれば「補助金の申請は難しく無い」ということです。 今一度、自身の会社の経営と向き合う機会にしてみてはどうでしょうか? 普段考えていることをこの機会に具体化するのは良い機会だと思います。 2.補助金採択を獲得するめのポイント 過去事例からお話しします。ロボットを活用して熟練技術の自動化を試みた際に、補助金を申請して落ちたことがあります。驚いたことに落ちた理由は、「内容が難しすぎて到底自動化できるものではない」という評価を得たからでした。 補助金申請では実証実験をしっかりとしたことを記述することが通過のカギとなると考えます。 上記の内容では、しっかりと実験したうえで確証をもってロボットでの自動化の為に補助金を申請しました。 その際の記述は税理士の方だったかと思います。 その方にしっかりと今回の技術要件を説明しておけば避けられた事態でした。 補助金の審査は中小企業診断士を持った審査員が実施しますが、もし技術に明るい人にあたると「私の知っている限り、技術的に厳しい、無理だな」と思われる、このことを知ったのはだいぶ後の話でした。 つまり、技術に明るくないと、そもそも補助金申請の際に内容をしっかりと書ききることはできません。 自社の技術を一番知り、何を解決し、何を実現したいか?そして解決できる技術はどんなものか?それを理解するのは補助金を申請したいと思った、経営者のあなたです。   製造業経営者限定!工場のロボット活用事例レポート! ロボット活用の現状とポイント、成功事例をこの1冊に集約! 製造業の経営者限定でダウンロード可能な特別版!! ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_01068 「こうなりたい!」と思っている経営者様におすすめ 中小製造業のロボット活用の現状を知りたい! 中小製造業のロボット活用のポイントを知りたい! 中小製造業のロボット活用の成功事例を知りたい! 目次 1、中小製造業のロボット活用の現状 2、中小製造業のロボット活用のポイント 3、中小製造業のロボット活用事例 レポートの内容 製造業の経営者限定でダウンロード可能な特別版!! 国内中小製造業のロボット活用における現状、ポイント、成功事例をこの1冊にまとめました!! このレポートを読むメリット 中小製造業のロボット活用の現状、ポイント、成功事例が一度に分かる!   ■関連セミナー開催のお知らせ 多品種少量生産の化粧塗装・下塗り塗装ロボット活用!社長セミナー https://www.funaisoken.co.jp/seminar/091279   このような方にオススメ 樹脂塗装を手塗りされている企業の社長様 多品種少量生産している樹脂・金属加工業の社長様 塗装ロボット活用にこれから取り組みたいが、どのように始めれば良いか分からない社長様 ロボットで塗装が出来るのか不安視されている社長様 塗装職人の不足や品質の安定に課題を持たれている社長様 ■開催日程 (全てオンライン開催:PCがあればどこでも受講可能!) 下記いずれかの日程よりご都合の良い日をお選び下さい 2022/11/08 (火) 13:00~15:00 2022/11/10 (木) 13:00~15:00 2022/11/16 (水) 13:00~15:00 2022/11/24 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/091279   いつも当コラムをご愛読いただきありがとうございます。 補助金は中小企業の経営になくてはならない存在です。 ものづくり補助金を活用して最新加工機やロボット設備を入れることをされる経営者の皆様は多いと思います。 また最近ではデジタル枠もでてきました。今回は、補助金採択のポイントを解説していきます。 1.自身の会社と今一度向き合おう! 補助金申請の内容は一番自社のことを分かっている経営者が、自身の会社を経営するにあたっての基本的な考え方が凝縮されています。 ものづくり補助金の、よくある書き方を一例にしますと下記になるかと思います。 ①あなたの会社はどんな会社ですか? ②あなたの会社の強みは何ですか? ③今回補助金を申請するのは何故ですか?  解決したい課題の背景と目的 ④あなたはどんな社内体制で課題に立ち向かいますか? ⑤解決したい課題はどのような技術的な課題がありますか? ⑥解決したい課題をどのような“新”技術で解決しますか? ⑦解決したい課題を解決することでどのような優位性が生まれますか? ⑧解決したい課題は世の中のどのような課題とマッチしていると思いますか? ⑨課題が解決することで、どのような市場でどういう結果を残せそうですか? ⑩課題を解決するためのスケジュールは? 補助金の要綱に照らし合わせながら書く必要がありますが大まかにこのような内容となります。 補助金で求められる内容は基礎的な項目だと考えます。発展的な内容は技術的な項目だけで非常に基礎的な内容です。 なので、自身の会社をしっかり分析して経営の基礎さえ押さえていれば「補助金の申請は難しく無い」ということです。 今一度、自身の会社の経営と向き合う機会にしてみてはどうでしょうか? 普段考えていることをこの機会に具体化するのは良い機会だと思います。 2.補助金採択を獲得するめのポイント 過去事例からお話しします。ロボットを活用して熟練技術の自動化を試みた際に、補助金を申請して落ちたことがあります。驚いたことに落ちた理由は、「内容が難しすぎて到底自動化できるものではない」という評価を得たからでした。 補助金申請では実証実験をしっかりとしたことを記述することが通過のカギとなると考えます。 上記の内容では、しっかりと実験したうえで確証をもってロボットでの自動化の為に補助金を申請しました。 その際の記述は税理士の方だったかと思います。 その方にしっかりと今回の技術要件を説明しておけば避けられた事態でした。 補助金の審査は中小企業診断士を持った審査員が実施しますが、もし技術に明るい人にあたると「私の知っている限り、技術的に厳しい、無理だな」と思われる、このことを知ったのはだいぶ後の話でした。 つまり、技術に明るくないと、そもそも補助金申請の際に内容をしっかりと書ききることはできません。 自社の技術を一番知り、何を解決し、何を実現したいか?そして解決できる技術はどんなものか?それを理解するのは補助金を申請したいと思った、経営者のあなたです。   製造業経営者限定!工場のロボット活用事例レポート! ロボット活用の現状とポイント、成功事例をこの1冊に集約! 製造業の経営者限定でダウンロード可能な特別版!! ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_01068 「こうなりたい!」と思っている経営者様におすすめ 中小製造業のロボット活用の現状を知りたい! 中小製造業のロボット活用のポイントを知りたい! 中小製造業のロボット活用の成功事例を知りたい! 目次 1、中小製造業のロボット活用の現状 2、中小製造業のロボット活用のポイント 3、中小製造業のロボット活用事例 レポートの内容 製造業の経営者限定でダウンロード可能な特別版!! 国内中小製造業のロボット活用における現状、ポイント、成功事例をこの1冊にまとめました!! このレポートを読むメリット 中小製造業のロボット活用の現状、ポイント、成功事例が一度に分かる!   ■関連セミナー開催のお知らせ 多品種少量生産の化粧塗装・下塗り塗装ロボット活用!社長セミナー https://www.funaisoken.co.jp/seminar/091279   このような方にオススメ 樹脂塗装を手塗りされている企業の社長様 多品種少量生産している樹脂・金属加工業の社長様 塗装ロボット活用にこれから取り組みたいが、どのように始めれば良いか分からない社長様 ロボットで塗装が出来るのか不安視されている社長様 塗装職人の不足や品質の安定に課題を持たれている社長様 ■開催日程 (全てオンライン開催:PCがあればどこでも受講可能!) 下記いずれかの日程よりご都合の良い日をお選び下さい 2022/11/08 (火) 13:00~15:00 2022/11/10 (木) 13:00~15:00 2022/11/16 (水) 13:00~15:00 2022/11/24 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/091279  

製造業のデジタル戦略!デジタル戦略を描けるか!

2022.09.16

1.デジタル戦略とは何なのか デジタル戦略とは、デジタルツールやシステムを使って自社の運営を【目的地】へ持っていくためにデータを蓄積・可視化させながら具体的に計画立てることを指します。企業の【目的地】と聞くと、何を思い浮かべるでしょうか。売上や顧客満足度向上させるなどなど様々の視点からの考えがあるかと思います。もちろんデジタル戦略から期待できる効果にはそういった一面もあります。 しかし、それだけがデジタル戦略の狙いではありません。本当の意味でのデジタル戦略とは、IT機器やシステムを活用して、社員やスタッフが働きやすく、本来発揮すべき能力をいかんなく発揮できる環境を整えることも内容に含んでいます。 ユーザーや顧客に関わるような社外からの評価上昇だけでなく、社内から組織への評価上昇をも狙って戦略的にアプローチをしていくのです。 つまりデジタル戦略とは、IT機器やシステムを用いながら、データ分析や考察を加えて内外から事業を発展させていこうとする計画を指すのです。 2.世界の動き ドイツ連邦政府が2016年3月に策定した「デジタル戦略2025」のように、国家施策として掲げているデジタル戦略もあります。「デジタル戦略2025」はギガビットネットワーク網を2025年までに整備するためのファンド設立や、中小企業のデジタル化を支援するための投資など、経済的支援を中心とした内容になっています。 また、中国では製造業において習近平政権が2015年5月に発表した産業政策「中国製造2025(メイド・イン・チャイナ2025)」があります。「5つの基本方針」と「4つの基本原則」を掲げ、2049年までに3段階の戦略目標を設けています。 第①段階:2025年までに「製造強国への仲間入り」を果たす 第②段階:2035年までに「世界の製造強国の中等レベルへ到達」する 第③段階:2049年(中国建国100周年)までに製造大国の地位を固め「製造強国のトップ」となる 端的に言うと、従来の量で圧倒する「製造大国」 から、テクノロジーに裏打ちされた質で勝負する「製造強国」へ転換していく国家戦略と言えます。もちろん、デジタル戦略を持って中国は製造大国にのし上がろうとしているのです。 では、製造業におけるデジタル戦略とは何なのか? 次項では製造業が目指すべきデジタル戦略について解説していきます。 3.製造業におけるデジタル戦略 デジタル戦略とは一部の作業をデジタル化/電子化することでありません。それは現状の作業の置き換えで本質的なことではないのです。紙を電子帳票にすることは「始めの一歩」としては大切ですが、それで終了してしまえば、「働き方が変わる」ようなインパクトはなく、従来のやり方と仕事の仕方はさほど変わりません。デジタル戦略とは、働き方、考え方、企業文化ごと変えることが本質なのです。 製造業におけるデジタル戦略は、大きく以下の2つに分類されると考えています。 ①SFA(営業支援ツール)やMA(マーケティングオートメーション)に代表される製品・サービスの向上 ②デジタルによる製造プロセスの改革 ①は経営層や企画・営業部門の視点です。具体例としては「新製品や新サービス価値の開発」「顧客対応やマーケティングの活用」が挙げられます。この領域についてはSFAやMAを導入している/検討している企業も多いかと思います。 ②は生産現場の視点です。具体例としては生産状況のデータ活用による「生産工程の最適化」「生産計画の最適化」などが挙げられます。 生産状況のデータを取得している企業は多いかと思いますが、では、そのデータを「生産効率を向上させる」という目的で活用している企業はどれほどあるでしょうか。 ほとんどの企業では、行き着くところ「蓄積しているだけ」、もしくは「生産実績を入れているだけ」という状況ではないでしょうか。 かつては「リアルタイムで生産状況を可視化する」「詳細データを持って課題を検討する」ということは手間がかかりすぎて難しいことでしたが、昨今はIoTツールやタブレット、クラウドサービスの活用により、比較的容易に生産状況を詳細に取得できるようになりました。 生産現場においては「人・モノ・設備の状況取得」が可能になれば、例えば 1)正確な製造原価の把握、2)ボトルネックの抽出(人がネックか設備がネックか等)3)投資判断 などデータからいくらでも炙り出すことが出来ます。言わば、デジタル戦略における生産側の土台となります。 ブラックボックスになりがちな生産現場において、「あらゆる物事を、データを根拠に判断」していくということが、これからの製造業では目指すべき姿と考えます。 少なくとも欧米中国はそこに向かって走り出しています。 上記内容について、会社として取り組むことが重要で、部門ごとで検討することではありません。仕事の仕方、考え方、企業風土まで変えていく取組となります。企業として大きな取組であり「改革」です。これは時代とともに自然と行き着くものでもありません。その判断が出来なければ、現状のまま5年先10年先と今と同じやり方でモノづくりが行われるでしょう。 現状を打破する/変えていく必要があると感じているのであれば、今後数年で取り組んでいかなければならないことであると考えます。 まずは10年後、自社のモノづくりがどうありたいかを描くことから始めましょう。   工場のAI・デジタル化最新事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext04-01-dl.html 「AIやデジタルツールなどを使うことで、工場内のどのような課題を解決できるのか?」 「工場のDX(デジタルトランスフォーメーション)に関して、具体的な事例を知りたい」 本レポートでは、「工場のAI・デジタル化」にテーマを絞った上で、各種事例をご紹介いたします。 【事例①】AI活用を通じて「見積もり業務の標準化・脱属人化」を推進 【事例②】AIを活用した「類似案件検索システム」の確立 【事例③】AIを活用した外観検査体制の構築 【事例④】現場に散乱していた生産日報・日常点検表等のペーパーレス化を実現 【事例⑤】メンテナンス事業の案件情報一元管理 【事例⑥】営業担当者のワンストップ簡易設計システムの構築 【事例⑦】クラウドIoTによる設備の故障予知   ■関連セミナー開催のお知らせ 「製造業の為のAI活用戦略!経営者セミナー」 ”製造業の取組事例に学ぶ!製造業経営者が知っておくべきAI活⽤戦略!” https://www.funaisoken.co.jp/seminar/090015   このような方にオススメ AIに関心はあるが、自社の経営・営業にAIを具体的にどう活用できるかを知りたい”製造業経営者” 営業部門がまだまだ属人的で、個々の営業スタッフの経験や勘に依存していると感じている”製造業経営者” 生産技術・生産計画・生産管理を特定の熟練者に依存していてブラックボックス化していると感じている”製造業経営者” 製造現場では匠の技が駆使されていて、AI化・IoT化・ロボット化・デジタル化が進んでいないと感じてる”製造業経営者” 営業管理・生産管理・原価管理等の基幹システムに課題があり、非効率的で改善が必要と感じている”製造業経営者”の方 ■開催日程 (全てオンライン開催:PCがあればどこでも受講可能!) 下記いずれかの日程よりご都合の良い日をお選び下さい 2022/10/04 (火) 13:00~15:00 2022/10/06 (木) 13:00~15:00 2022/10/11 (火) 13:00~15:00 2022/10/14 (金) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/090015   いつも当コラムをご愛読いただきありがとうございます。 1.デジタル戦略とは何なのか デジタル戦略とは、デジタルツールやシステムを使って自社の運営を【目的地】へ持っていくためにデータを蓄積・可視化させながら具体的に計画立てることを指します。企業の【目的地】と聞くと、何を思い浮かべるでしょうか。売上や顧客満足度向上させるなどなど様々の視点からの考えがあるかと思います。もちろんデジタル戦略から期待できる効果にはそういった一面もあります。 しかし、それだけがデジタル戦略の狙いではありません。本当の意味でのデジタル戦略とは、IT機器やシステムを活用して、社員やスタッフが働きやすく、本来発揮すべき能力をいかんなく発揮できる環境を整えることも内容に含んでいます。 ユーザーや顧客に関わるような社外からの評価上昇だけでなく、社内から組織への評価上昇をも狙って戦略的にアプローチをしていくのです。 つまりデジタル戦略とは、IT機器やシステムを用いながら、データ分析や考察を加えて内外から事業を発展させていこうとする計画を指すのです。 2.世界の動き ドイツ連邦政府が2016年3月に策定した「デジタル戦略2025」のように、国家施策として掲げているデジタル戦略もあります。「デジタル戦略2025」はギガビットネットワーク網を2025年までに整備するためのファンド設立や、中小企業のデジタル化を支援するための投資など、経済的支援を中心とした内容になっています。 また、中国では製造業において習近平政権が2015年5月に発表した産業政策「中国製造2025(メイド・イン・チャイナ2025)」があります。「5つの基本方針」と「4つの基本原則」を掲げ、2049年までに3段階の戦略目標を設けています。 第①段階:2025年までに「製造強国への仲間入り」を果たす 第②段階:2035年までに「世界の製造強国の中等レベルへ到達」する 第③段階:2049年(中国建国100周年)までに製造大国の地位を固め「製造強国のトップ」となる 端的に言うと、従来の量で圧倒する「製造大国」 から、テクノロジーに裏打ちされた質で勝負する「製造強国」へ転換していく国家戦略と言えます。もちろん、デジタル戦略を持って中国は製造大国にのし上がろうとしているのです。 では、製造業におけるデジタル戦略とは何なのか? 次項では製造業が目指すべきデジタル戦略について解説していきます。 3.製造業におけるデジタル戦略 デジタル戦略とは一部の作業をデジタル化/電子化することでありません。それは現状の作業の置き換えで本質的なことではないのです。紙を電子帳票にすることは「始めの一歩」としては大切ですが、それで終了してしまえば、「働き方が変わる」ようなインパクトはなく、従来のやり方と仕事の仕方はさほど変わりません。デジタル戦略とは、働き方、考え方、企業文化ごと変えることが本質なのです。 製造業におけるデジタル戦略は、大きく以下の2つに分類されると考えています。 ①SFA(営業支援ツール)やMA(マーケティングオートメーション)に代表される製品・サービスの向上 ②デジタルによる製造プロセスの改革 ①は経営層や企画・営業部門の視点です。具体例としては「新製品や新サービス価値の開発」「顧客対応やマーケティングの活用」が挙げられます。この領域についてはSFAやMAを導入している/検討している企業も多いかと思います。 ②は生産現場の視点です。具体例としては生産状況のデータ活用による「生産工程の最適化」「生産計画の最適化」などが挙げられます。 生産状況のデータを取得している企業は多いかと思いますが、では、そのデータを「生産効率を向上させる」という目的で活用している企業はどれほどあるでしょうか。 ほとんどの企業では、行き着くところ「蓄積しているだけ」、もしくは「生産実績を入れているだけ」という状況ではないでしょうか。 かつては「リアルタイムで生産状況を可視化する」「詳細データを持って課題を検討する」ということは手間がかかりすぎて難しいことでしたが、昨今はIoTツールやタブレット、クラウドサービスの活用により、比較的容易に生産状況を詳細に取得できるようになりました。 生産現場においては「人・モノ・設備の状況取得」が可能になれば、例えば 1)正確な製造原価の把握、2)ボトルネックの抽出(人がネックか設備がネックか等)3)投資判断 などデータからいくらでも炙り出すことが出来ます。言わば、デジタル戦略における生産側の土台となります。 ブラックボックスになりがちな生産現場において、「あらゆる物事を、データを根拠に判断」していくということが、これからの製造業では目指すべき姿と考えます。 少なくとも欧米中国はそこに向かって走り出しています。 上記内容について、会社として取り組むことが重要で、部門ごとで検討することではありません。仕事の仕方、考え方、企業風土まで変えていく取組となります。企業として大きな取組であり「改革」です。これは時代とともに自然と行き着くものでもありません。その判断が出来なければ、現状のまま5年先10年先と今と同じやり方でモノづくりが行われるでしょう。 現状を打破する/変えていく必要があると感じているのであれば、今後数年で取り組んでいかなければならないことであると考えます。 まずは10年後、自社のモノづくりがどうありたいかを描くことから始めましょう。   工場のAI・デジタル化最新事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext04-01-dl.html 「AIやデジタルツールなどを使うことで、工場内のどのような課題を解決できるのか?」 「工場のDX(デジタルトランスフォーメーション)に関して、具体的な事例を知りたい」 本レポートでは、「工場のAI・デジタル化」にテーマを絞った上で、各種事例をご紹介いたします。 【事例①】AI活用を通じて「見積もり業務の標準化・脱属人化」を推進 【事例②】AIを活用した「類似案件検索システム」の確立 【事例③】AIを活用した外観検査体制の構築 【事例④】現場に散乱していた生産日報・日常点検表等のペーパーレス化を実現 【事例⑤】メンテナンス事業の案件情報一元管理 【事例⑥】営業担当者のワンストップ簡易設計システムの構築 【事例⑦】クラウドIoTによる設備の故障予知   ■関連セミナー開催のお知らせ 「製造業の為のAI活用戦略!経営者セミナー」 ”製造業の取組事例に学ぶ!製造業経営者が知っておくべきAI活⽤戦略!” https://www.funaisoken.co.jp/seminar/090015   このような方にオススメ AIに関心はあるが、自社の経営・営業にAIを具体的にどう活用できるかを知りたい”製造業経営者” 営業部門がまだまだ属人的で、個々の営業スタッフの経験や勘に依存していると感じている”製造業経営者” 生産技術・生産計画・生産管理を特定の熟練者に依存していてブラックボックス化していると感じている”製造業経営者” 製造現場では匠の技が駆使されていて、AI化・IoT化・ロボット化・デジタル化が進んでいないと感じてる”製造業経営者” 営業管理・生産管理・原価管理等の基幹システムに課題があり、非効率的で改善が必要と感じている”製造業経営者”の方 ■開催日程 (全てオンライン開催:PCがあればどこでも受講可能!) 下記いずれかの日程よりご都合の良い日をお選び下さい 2022/10/04 (火) 13:00~15:00 2022/10/06 (木) 13:00~15:00 2022/10/11 (火) 13:00~15:00 2022/10/14 (金) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/090015  

製造業・工場におけるロボット活用成功事例を4つご紹介致します。

2022.09.12

今回のコラムでは製造業・工場におけるロボット活用成功事例を4つご紹介致します。 1.職人技術である溶接工程とグラインダー工程へのロボット活用を成功させた事例 ■事例企業の概要 所在地:大阪府 業種:板金加工業 従業員数:100名 ■ロボット活用事例の概要 溶接工程及びグラインダーによる研磨工程にロボットを導入 ■導入前の課題と導入後の効果 ロボット導入前は溶接職人による溶接とグラインダー研磨を行っており、職人に依存した生産体制となっていた。 さらに、職人それぞれが共通の品質基準を持っていないため職人によって品質にバラつきがあり過剰品質となっている場合もあり、ムダな工数が発生していた。 ロボット導入後は職人に依存した溶接とグラインダー研磨をロボットが行うことで工数が削減された。 品質面でも、ロボットが溶接と研磨を行うことで一定の品質で製品を製造することが可能となった。 ■成功のポイント 今回のロボットシステムでは溶接においては本溶接のみをロボット溶接の対象とすることでロボット導入の難易度を下げることに成功した。 人による仮溶接とロボットによる本溶接を組み合わせることで、ロボット周辺機器のコストを削減した。 上記を実施するための現状の作業分析が成功のポイントである。 作業分析からロボットに行わせる作業を絞り込むことが重要となる。 2.従業員10名の会社が10台の溶接ロボットを活用している事例 ■事例企業の概要 所在地:北海道 業種:板金加工業 従業員数:10名 ■ロボット活用事例の概要 溶接ロボットを10台導入 ■導入前の課題と導入後の効果 土地柄もあり溶接工の確保が大きな課題となっていた。 また、若手を採用しても客先に出荷できるレベルの良品を一人で生産できるようになるには5年~10年ほどかかるため溶接工の不足は深刻であった。 順次ロボットを導入し、社員に求める能力を溶接技術からロボット制御技術へと展開していった。 治具の共通化やオフラインティーチングの活用により多品種少量生産にも対応できるロボットシステムを導入。 溶接技術の足りない若手でも、ロボット制御技術を覚えることで、従来であれば良品を生産するのに5年以上かかったいた製品も、わずか1,2年で生産できるようになり人手不足が解消された。 品質はいうまでもなく向上した。 ■成功のポイント 治具の共通化やオフラインティーチングソフトの活用による多品種対応。 社員に求める能力を溶接技術からロボット制御技術へシフトし、社員全員がロボットを操作できる会社を作り上げたこと。 3.従業員10名の企業が協働ロボットを導入、多品種少量金属加工の生産性を向上した事例 ■事例企業の概要 所在地:神奈川県 業種:機械加工業 従業員数:10名 ■ロボット活用事例の概要 マシニングセンターのワーク脱着に協働ロボットを導入 ■導入前の課題と導入後の効果 ワーク脱着という単純作業に熟練職人の工数が取られてしまい、新規品の加工プログラム作成やその他改善などの職人技術が必要な仕事にかける工数が取れない状態になっていた。 多品種少量生産対応のためのワーク脱着協働ロボットを導入。 ロボットの対象製品以外を加工する際にロボットが邪魔にならないように簡単にどかせるようなロボットシステムとした。 単純作業をロボットに代替えすることで熟練職人の工数が空き、より高付加価値業務へ取り組むことが可能となった。 ■成功のポイント 必要な時にだけ使える、簡単にどかせるロボットを構想したこと。 カラクリ機構や様々なアイディアを活用して導入コストも抑えている。 4.単調で危険なプレス工程へのワーク投入作業に協働ロボットを活用した成功事例 ■事例企業の概要 所在地:愛知県 業種:プレス加工業 従業員数:50名 ■ロボット活用事例の概要 プレス機へのワーク供給に協働ロボットを導入 ■導入前の課題と導入後の効果 危険で単調な作業であるプレス機へのワーク供給が従業員への負担となっていた。 カメラ付きの協働ロボットを導入することでプレス機へのワーク供給に成功。 狭いスペースでも協働ロボットを活用することで安全柵が不要となり、ムダなレイアウト変更等は行わずにロボットを導入することができた。 ■成功のポイント 製造工程の中でどの工程がネックになっているか、どの工程が収益を圧迫しているか、をデータ(数字)を取って見える化し、そのネック工程をロボット化したことで単純な工数削減だけではなく、製品の儲けに直結するロボット導入としたことが成功のポイントである。   製造業経営者限定!工場のロボット活用事例レポート! ロボット活用の現状とポイント、成功事例をこの1冊に集約! 製造業の経営者限定でダウンロード可能な特別版!! ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_01068 ■「こうなりたい!」と思っている経営者様におすすめ 中小製造業のロボット活用の現状を知りたい! 中小製造業のロボット活用のポイントを知りたい! 中小製造業のロボット活用の成功事例を知りたい! ■目次 1、中小製造業のロボット活用の現状 2、中小製造業のロボット活用のポイント 3、中小製造業のロボット活用事例 ■レポートの内容 製造業の経営者限定でダウンロード可能な特別版!! 国内中小製造業のロボット活用における現状、ポイント、成功事例をこの1冊にまとめました!! ■このレポートを読むメリット 中小製造業のロボット活用の現状、ポイント、成功事例が一度に分かる!   ■関連セミナー開催のお知らせ 食品・飲料品メーカーのロボット活用!社長セミナー 自動化・ロボット活用で製造現場の人手不足対策! https://www.funaisoken.co.jp/seminar/089309   このような方にオススメ 多品種小ロット生産で労働集約型なので生産性をもっと上げたいと思っている”食品・飲料品メーカー経営者” 生産現場の人手不足が常態化して、採用しようにもなかなか難しいと悩んでいる”食品・飲料品メーカー経営者” 生産現場が属人化していてベテラン社員の依存度が高いと感じている”食品・飲料品メーカー経営者” 生産技術を特定の熟練者に依存していてブラックボックス化していると感じている”食品・飲料品メーカー経営者” 自動化・ロボット化&IoT化&現場改善をもっと推進したいと考えている”食品・飲料品メーカー経営者” ■開催日程 (全てオンライン開催:PCがあればどこでも受講可能!) 下記いずれかの日程よりご都合の良い日をお選び下さい 2022/10/18 (火) 13:00~15:00 2022/10/19 (水) 13:00~15:00 2022/10/25 (火) 13:00~15:00 2022/10/27 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/089309   いつも当コラムをご愛読いただきありがとうございます。 今回のコラムでは製造業・工場におけるロボット活用成功事例を4つご紹介致します。 1.職人技術である溶接工程とグラインダー工程へのロボット活用を成功させた事例 ■事例企業の概要 所在地:大阪府 業種:板金加工業 従業員数:100名 ■ロボット活用事例の概要 溶接工程及びグラインダーによる研磨工程にロボットを導入 ■導入前の課題と導入後の効果 ロボット導入前は溶接職人による溶接とグラインダー研磨を行っており、職人に依存した生産体制となっていた。 さらに、職人それぞれが共通の品質基準を持っていないため職人によって品質にバラつきがあり過剰品質となっている場合もあり、ムダな工数が発生していた。 ロボット導入後は職人に依存した溶接とグラインダー研磨をロボットが行うことで工数が削減された。 品質面でも、ロボットが溶接と研磨を行うことで一定の品質で製品を製造することが可能となった。 ■成功のポイント 今回のロボットシステムでは溶接においては本溶接のみをロボット溶接の対象とすることでロボット導入の難易度を下げることに成功した。 人による仮溶接とロボットによる本溶接を組み合わせることで、ロボット周辺機器のコストを削減した。 上記を実施するための現状の作業分析が成功のポイントである。 作業分析からロボットに行わせる作業を絞り込むことが重要となる。 2.従業員10名の会社が10台の溶接ロボットを活用している事例 ■事例企業の概要 所在地:北海道 業種:板金加工業 従業員数:10名 ■ロボット活用事例の概要 溶接ロボットを10台導入 ■導入前の課題と導入後の効果 土地柄もあり溶接工の確保が大きな課題となっていた。 また、若手を採用しても客先に出荷できるレベルの良品を一人で生産できるようになるには5年~10年ほどかかるため溶接工の不足は深刻であった。 順次ロボットを導入し、社員に求める能力を溶接技術からロボット制御技術へと展開していった。 治具の共通化やオフラインティーチングの活用により多品種少量生産にも対応できるロボットシステムを導入。 溶接技術の足りない若手でも、ロボット制御技術を覚えることで、従来であれば良品を生産するのに5年以上かかったいた製品も、わずか1,2年で生産できるようになり人手不足が解消された。 品質はいうまでもなく向上した。 ■成功のポイント 治具の共通化やオフラインティーチングソフトの活用による多品種対応。 社員に求める能力を溶接技術からロボット制御技術へシフトし、社員全員がロボットを操作できる会社を作り上げたこと。 3.従業員10名の企業が協働ロボットを導入、多品種少量金属加工の生産性を向上した事例 ■事例企業の概要 所在地:神奈川県 業種:機械加工業 従業員数:10名 ■ロボット活用事例の概要 マシニングセンターのワーク脱着に協働ロボットを導入 ■導入前の課題と導入後の効果 ワーク脱着という単純作業に熟練職人の工数が取られてしまい、新規品の加工プログラム作成やその他改善などの職人技術が必要な仕事にかける工数が取れない状態になっていた。 多品種少量生産対応のためのワーク脱着協働ロボットを導入。 ロボットの対象製品以外を加工する際にロボットが邪魔にならないように簡単にどかせるようなロボットシステムとした。 単純作業をロボットに代替えすることで熟練職人の工数が空き、より高付加価値業務へ取り組むことが可能となった。 ■成功のポイント 必要な時にだけ使える、簡単にどかせるロボットを構想したこと。 カラクリ機構や様々なアイディアを活用して導入コストも抑えている。 4.単調で危険なプレス工程へのワーク投入作業に協働ロボットを活用した成功事例 ■事例企業の概要 所在地:愛知県 業種:プレス加工業 従業員数:50名 ■ロボット活用事例の概要 プレス機へのワーク供給に協働ロボットを導入 ■導入前の課題と導入後の効果 危険で単調な作業であるプレス機へのワーク供給が従業員への負担となっていた。 カメラ付きの協働ロボットを導入することでプレス機へのワーク供給に成功。 狭いスペースでも協働ロボットを活用することで安全柵が不要となり、ムダなレイアウト変更等は行わずにロボットを導入することができた。 ■成功のポイント 製造工程の中でどの工程がネックになっているか、どの工程が収益を圧迫しているか、をデータ(数字)を取って見える化し、そのネック工程をロボット化したことで単純な工数削減だけではなく、製品の儲けに直結するロボット導入としたことが成功のポイントである。   製造業経営者限定!工場のロボット活用事例レポート! ロボット活用の現状とポイント、成功事例をこの1冊に集約! 製造業の経営者限定でダウンロード可能な特別版!! ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_01068 ■「こうなりたい!」と思っている経営者様におすすめ 中小製造業のロボット活用の現状を知りたい! 中小製造業のロボット活用のポイントを知りたい! 中小製造業のロボット活用の成功事例を知りたい! ■目次 1、中小製造業のロボット活用の現状 2、中小製造業のロボット活用のポイント 3、中小製造業のロボット活用事例 ■レポートの内容 製造業の経営者限定でダウンロード可能な特別版!! 国内中小製造業のロボット活用における現状、ポイント、成功事例をこの1冊にまとめました!! ■このレポートを読むメリット 中小製造業のロボット活用の現状、ポイント、成功事例が一度に分かる!   ■関連セミナー開催のお知らせ 食品・飲料品メーカーのロボット活用!社長セミナー 自動化・ロボット活用で製造現場の人手不足対策! https://www.funaisoken.co.jp/seminar/089309   このような方にオススメ 多品種小ロット生産で労働集約型なので生産性をもっと上げたいと思っている”食品・飲料品メーカー経営者” 生産現場の人手不足が常態化して、採用しようにもなかなか難しいと悩んでいる”食品・飲料品メーカー経営者” 生産現場が属人化していてベテラン社員の依存度が高いと感じている”食品・飲料品メーカー経営者” 生産技術を特定の熟練者に依存していてブラックボックス化していると感じている”食品・飲料品メーカー経営者” 自動化・ロボット化&IoT化&現場改善をもっと推進したいと考えている”食品・飲料品メーカー経営者” ■開催日程 (全てオンライン開催:PCがあればどこでも受講可能!) 下記いずれかの日程よりご都合の良い日をお選び下さい 2022/10/18 (火) 13:00~15:00 2022/10/19 (水) 13:00~15:00 2022/10/25 (火) 13:00~15:00 2022/10/27 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/089309  

工場の収益・原価改善に直結!“工数データ把握”の重要性とは?

2022.09.07

今回は、「工場の収益・原価改善に直結!“工数データ把握“の重要性とは?」 というテーマについてお伝えさせていただきます。 1.中堅・中小製造業様に概ね共通する課題 日々全国各地の中堅・中小製造業の企業様を訪問する中で、 各企業様の生産現場に概ね共通する課題が見えてきました。 それは、「生産現場の“工数実績データ”が正確に把握できていない」という課題です。 事実、とある生産現場の一例をお伝えすると、 そもそも工数実績データを蓄積・管理していない 蓄積した工数実績データの精度・信憑性が低い(データの正確性に欠ける) 工数実績データを取得しているが、取得したデータはその後特に活用されていない 等の課題が見えてきました。 多くの製造業の企業様では作業日報の活用等を通じて、生産現場の“工数実績データ”の把握に努めているかと存じますが、 その根本的な目的や活用方針等を十分に整理・実践できている企業様は意外と少数派のようです。 2.なぜ、“工数データの正確な把握”が重要なのか? 製造業の企業様にとって、“工数実績データの正確な把握”が必要かつ重要である理由は大きく2点あります。 【理由①:原価を正確に把握するため】 製造業の企業様にとって、“工数実績データの正確な把握”が必要かつ重要である理由の1つ目は、「工数実績データが正確に把握できないと、原価が正確に把握できないため」ということです。 多くの製造業の企業様において、まずは生産対象となる各製品に紐づく各工程の「工数」×「工賃」の合計を把握することで加工原価の算出を進めるかと思いますが、その算出元となる「工数」の精度・信憑性に欠けると、加工原価の正確な算出が困難となります。 加工原価の正確な算出が困難ということは、すなわち自社工場の製品別原価・利益を正確に把握できない状態を意味します。 敢えて別な表現をするならば、自社で生産している各製品について、「どの製品が儲かっているのか?(儲かっていないのか?)」を厳密には把握することができない状態にあるということが言えます。 自社工場の製品別原価・利益の現状を正確に把握できないとなると、その後の原価改善・利益確保に向けて改善対象となる要因を正確に突き止めることができません。 改善対象となる要因が正確に掴めないため、その後の現場改善が十分に進まず、結果として各製品の儲け具合を改善することが難しくなります。 逆を言えば、 生産現場の工数実績データを正確に把握することで、 既存設備のスペックに問題があるのか? 工程の存在自体に問題があるのか? 現場担当者の段取りのやり方に問題があるのか? 等のように、 その後の原価改善・利益確保に直結する“ボトルネック”を 正確に把握することが可能となります。 製造業の企業様にとって、 “工数実績データの正確な把握”が 必要かつ重要である理由の2つ目は、「標準時間(リードタイム)を正確に把握するため」ということです。 【理由②:標準時間(リードタイム)を正確に把握するため】 多くの製造業の企業様では各製品の「標準時間」を設定しているかと存じます。 「標準時間」とは、その製品(もしくは部品)を生産するために必要な時間のことを言いますが、その「標準時間」をもとに見積もりが作られ、その製品(もしくは部品)の売価が決定されます。 また、「標準時間」は工場の生産計画にも活用されます。 「標準時間」の設定を見誤ると、自社製品(もしくは部品)の売価の設定や生産計画の立案精度に支障をきたすことになり、結果として会社の収益にも影響を与えることになります。 したがって、「標準時間」の設定に際しては、 そもそも製品(もしくは部品)別の標準時間がわからない 標準時間を最後に設定したのは数年前で、ここ数年間は特に見直し・更新を行っていない 設定する標準時間が短すぎる(⇒標準時間より多くの工数がかかってしまい、納期遅れや赤字の原因に・・・) 設定する標準時間が長すぎる(⇒本来よりも高い価格提示・長い納期提示となってしまい、失注の原因に・・・) 等の状態を避ける必要があります。 3.おわりに 以上、「工場の収益・原価改善に直結!“工数データ把握“の重要性とは?」というテーマについてお伝えさせていただきました。 本コラムの内容についてご興味のある方は、是非以下のURLからお気軽にお問い合わせください。 ▼本コラムの内容に関するお問い合わせはこちら https://lp.funaisoken.co.jp/mt/form01/inquiry-S045.html?siteno=S045   【無料ダウンロード!!】個別製品別原価改善最新事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory__00950 ■「こうなりたい!」と思っている経営者様におすすめ ・原価管理体制を改善して収益UPしたい! ・製品個別の原価が見えるようにしたい! ・現場を巻き込んだ原価改善を進めたい! ■目次 1、従業員30名金属加工業の原価改善事例 2、工程毎の作業時間を可視化する事で現場からの原価改善が促進 3、生産管理、原価管理システムを導入 4、手書き日報からリアルタイム日報に運用を改善   ■関連セミナー開催のお知らせ 「機械加工業の為の儲けの管理!」 社長セミナー 無料ダウンロードはこちらから https://www.funaisoken.co.jp/seminar/088870   このような方にオススメ 従業員200名以下の機械加工業の社長様 製品毎の原価、取引先毎の原価、工程毎の原価を把握し切れていない社長様 個別原価計算を実施しておらず、個別原価を把握しきれていない社長様 人手の掛かる作業や二重三重の生産管理・原価管理業務が多い機械加工業の社長様 生産管理・原価管理業務が職人化・属人化している機械加工業の社長様 ■開催日程 (全てオンライン開催:PCがあればどこでも受講可能!) 下記いずれかの日程よりご都合の良い日をお選び下さい 2022/09/20 (火) 13:00~15:00 2022/09/27 (火) 13:00~15:00 2022/09/28 (水) 13:00~15:00 2022/09/29 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/088870   いつも当コラムをご愛読いただきありがとうございます。 今回は、「工場の収益・原価改善に直結!“工数データ把握“の重要性とは?」 というテーマについてお伝えさせていただきます。 1.中堅・中小製造業様に概ね共通する課題 日々全国各地の中堅・中小製造業の企業様を訪問する中で、 各企業様の生産現場に概ね共通する課題が見えてきました。 それは、「生産現場の“工数実績データ”が正確に把握できていない」という課題です。 事実、とある生産現場の一例をお伝えすると、 そもそも工数実績データを蓄積・管理していない 蓄積した工数実績データの精度・信憑性が低い(データの正確性に欠ける) 工数実績データを取得しているが、取得したデータはその後特に活用されていない 等の課題が見えてきました。 多くの製造業の企業様では作業日報の活用等を通じて、生産現場の“工数実績データ”の把握に努めているかと存じますが、 その根本的な目的や活用方針等を十分に整理・実践できている企業様は意外と少数派のようです。 2.なぜ、“工数データの正確な把握”が重要なのか? 製造業の企業様にとって、“工数実績データの正確な把握”が必要かつ重要である理由は大きく2点あります。 【理由①:原価を正確に把握するため】 製造業の企業様にとって、“工数実績データの正確な把握”が必要かつ重要である理由の1つ目は、「工数実績データが正確に把握できないと、原価が正確に把握できないため」ということです。 多くの製造業の企業様において、まずは生産対象となる各製品に紐づく各工程の「工数」×「工賃」の合計を把握することで加工原価の算出を進めるかと思いますが、その算出元となる「工数」の精度・信憑性に欠けると、加工原価の正確な算出が困難となります。 加工原価の正確な算出が困難ということは、すなわち自社工場の製品別原価・利益を正確に把握できない状態を意味します。 敢えて別な表現をするならば、自社で生産している各製品について、「どの製品が儲かっているのか?(儲かっていないのか?)」を厳密には把握することができない状態にあるということが言えます。 自社工場の製品別原価・利益の現状を正確に把握できないとなると、その後の原価改善・利益確保に向けて改善対象となる要因を正確に突き止めることができません。 改善対象となる要因が正確に掴めないため、その後の現場改善が十分に進まず、結果として各製品の儲け具合を改善することが難しくなります。 逆を言えば、 生産現場の工数実績データを正確に把握することで、 既存設備のスペックに問題があるのか? 工程の存在自体に問題があるのか? 現場担当者の段取りのやり方に問題があるのか? 等のように、 その後の原価改善・利益確保に直結する“ボトルネック”を 正確に把握することが可能となります。 製造業の企業様にとって、 “工数実績データの正確な把握”が 必要かつ重要である理由の2つ目は、「標準時間(リードタイム)を正確に把握するため」ということです。 【理由②:標準時間(リードタイム)を正確に把握するため】 多くの製造業の企業様では各製品の「標準時間」を設定しているかと存じます。 「標準時間」とは、その製品(もしくは部品)を生産するために必要な時間のことを言いますが、その「標準時間」をもとに見積もりが作られ、その製品(もしくは部品)の売価が決定されます。 また、「標準時間」は工場の生産計画にも活用されます。 「標準時間」の設定を見誤ると、自社製品(もしくは部品)の売価の設定や生産計画の立案精度に支障をきたすことになり、結果として会社の収益にも影響を与えることになります。 したがって、「標準時間」の設定に際しては、 そもそも製品(もしくは部品)別の標準時間がわからない 標準時間を最後に設定したのは数年前で、ここ数年間は特に見直し・更新を行っていない 設定する標準時間が短すぎる(⇒標準時間より多くの工数がかかってしまい、納期遅れや赤字の原因に・・・) 設定する標準時間が長すぎる(⇒本来よりも高い価格提示・長い納期提示となってしまい、失注の原因に・・・) 等の状態を避ける必要があります。 3.おわりに 以上、「工場の収益・原価改善に直結!“工数データ把握“の重要性とは?」というテーマについてお伝えさせていただきました。 本コラムの内容についてご興味のある方は、是非以下のURLからお気軽にお問い合わせください。 ▼本コラムの内容に関するお問い合わせはこちら https://lp.funaisoken.co.jp/mt/form01/inquiry-S045.html?siteno=S045   【無料ダウンロード!!】個別製品別原価改善最新事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory__00950 ■「こうなりたい!」と思っている経営者様におすすめ ・原価管理体制を改善して収益UPしたい! ・製品個別の原価が見えるようにしたい! ・現場を巻き込んだ原価改善を進めたい! ■目次 1、従業員30名金属加工業の原価改善事例 2、工程毎の作業時間を可視化する事で現場からの原価改善が促進 3、生産管理、原価管理システムを導入 4、手書き日報からリアルタイム日報に運用を改善   ■関連セミナー開催のお知らせ 「機械加工業の為の儲けの管理!」 社長セミナー 無料ダウンロードはこちらから https://www.funaisoken.co.jp/seminar/088870   このような方にオススメ 従業員200名以下の機械加工業の社長様 製品毎の原価、取引先毎の原価、工程毎の原価を把握し切れていない社長様 個別原価計算を実施しておらず、個別原価を把握しきれていない社長様 人手の掛かる作業や二重三重の生産管理・原価管理業務が多い機械加工業の社長様 生産管理・原価管理業務が職人化・属人化している機械加工業の社長様 ■開催日程 (全てオンライン開催:PCがあればどこでも受講可能!) 下記いずれかの日程よりご都合の良い日をお選び下さい 2022/09/20 (火) 13:00~15:00 2022/09/27 (火) 13:00~15:00 2022/09/28 (水) 13:00~15:00 2022/09/29 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/088870  

製造業にも当てはまる?飲食業の倒産数から見るAIロボット活用の最前線

2022.08.24

1.増加傾向にある飲食業の倒産数 近年、飲食業の倒産件数は増加傾向にあります。それを後押ししていると考えられているのが「人手不足」「賃金の増加」「原材料の高騰」です。 2021年度は減少傾向にあるように見えますが、コロナ対策の一環で助成金が支給されたことによる一時的な効果であると考えられており、依然過去最多の前年に次ぐ件数がやむを得ず倒産しています。 2022年8月1日段階では東京都の最低賃金が1,041円からは31円UPの1,072円とすることが検討されています。 人手不足の状況が加速する中で、確保した人材を離さないためにも企業側はさらに賃金を上げるなどの工夫が強いられています。 さらにロシア-ウクライナ間情勢もあり、様々な原材料価格が急激なスピードで高騰しています。つまり、飲食業では「原価」が上限なく急激なスピードで高騰しているのです。 これは、飲食業に限った話ではなく、製造業にも置き換えることができる内容です。 2.3Kから脱却&原価を抑えるための“AIロボット活用” 製造業の労働環境について、よく「3K(きつい、汚い、危険)」という表現が用いられます。これは、飲食業界にとっても同じです。 そこで現在、食品製造業にとどまらず外食産業業でもAIロボット技術への関心が高まっています。 例えば、Flippyというシステムは高温の油で揚げるような厨房での危険な仕事を人間のスタッフの代わりに行うことができます。 このとき、FlippyはAIを用いて食品を区別してフライヤーに入れることができ、油で揚げてから別の容器に移す最終工程までを完了させることができます。 ここでポイントなのは「AI」を活用しているという点です。机上で設定したものを量産するのが従来のロボットの概念でしたが、AIを用いることでその場の温度や湿度、分類されていない原材料の分別なども加味することができます。 さらに最近では、ファミリーマート経済産業省店にAIシステムを導入したロボット『TX SCARA』が導入されました。 これは、独自のAIシステム『Gordon』の自動制御により、バックヤードなどの狭いスペースで稼働可能となる水平多関節型のロボットです。 このAIロボットの導入で一日約1,000本行われている飲料陳列業務を、ロボットが人に代わって24時間担うことができます。 重いペットボトルなどの陳列は3Kの一つとしてカウントできると考えられますが、この「きつい」業務をロボットに置き換えることができるため従業員の負担が減り、従業員は売り場を離れることなく接客業務などのより付加価値の高い業務に取り組むことができます。 今回は飲食業で普及が進むAIロボットについてご紹介しました。特に製造業の皆様においては、飲食業界は他人事ではないかと思います。 加速する原価高騰への対策として、導入を検討してみてはいかがでしょうか。   ■【無料ダウンロード】工場のAI化・デジタル化最新事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext04-01-dl.html?txt=%E3%80%90%E4%B8%AD%E5%A0%85%E3%83%BB%E4%B8%AD%E5%B0%8F%E8%A3%BD%E9%80%A0%E6%A5%AD%20%E7%B5%8C%E5%96%B6%E8%80%85%E6%A7%98%E5%90%91%E3%81%91%E3%80%91%22%E5%B7%A5%E5%A0%B4%E3%81%AEAI%E3%83%BB%E3%83%87%E3%82%B8%E3%82%BF%E3%83%AB%E5%8C%96%22%20%E6%9C%80%E6%96%B0%E4%BA%8B%E4%BE%8B%E8%A7%A3%E8%AA%AC%E3%83%AC%E3%83%9D%E3%83%BC%E3%83%88 「AIやデジタルツールなどを使うことで、工場内のどのような課題を解決できるのか?」 「工場のDX(デジタルトランスフォーメーション)に関して、具体的な事例を知りたい」 本レポートでは、「工場のAI・デジタル化」にテーマを絞った上で、各種事例をご紹介いたします。 【事例①】AI活用を通じて「見積もり業務の標準化・脱属人化」を推進 【事例②】AIを活用した「類似案件検索システム」の確立 【事例③】AIを活用した外観検査体制の構築 【事例④】現場に散乱していた生産日報・日常点検表等のペーパーレス化を実現 【事例⑤】メンテナンス事業の案件情報一元管理 【事例⑥】営業担当者のワンストップ簡易設計システムの構築 【事例⑦】クラウドIoTによる設備の故障予知   ■オンラインセミナー開催のお知らせ 【メーカー経営者のためのAI活用戦略セミナー】~取り組み事例に学ぶ!メーカー経営にAIを活⽤する具体的⽅法とは!!~ 無料ダウンロードはこちらから https://www.funaisoken.co.jp/seminar/088304   このような方にオススメ 自社の経営にAIがどう適用できるかを知りたいメーカー経営者の方 営業がまだまだ属人的で、営業スタッフ個人のスキルに依存していると感じているメーカー経営者の方 商品企画や設計開発部門でノウハウが標準化されずに人材育成が遅れていると感じているメーカー経営者の方 生産技術・生産管理部門も特定の熟練者に知見とノウハウが集中していると感じているメーカー経営者の方 製造部門では熟練技術・職人的な業務があり、属人化・ブラックBOX化していると感じているメーカー経営者の方 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/088304   1.増加傾向にある飲食業の倒産数 近年、飲食業の倒産件数は増加傾向にあります。それを後押ししていると考えられているのが「人手不足」「賃金の増加」「原材料の高騰」です。 2021年度は減少傾向にあるように見えますが、コロナ対策の一環で助成金が支給されたことによる一時的な効果であると考えられており、依然過去最多の前年に次ぐ件数がやむを得ず倒産しています。 2022年8月1日段階では東京都の最低賃金が1,041円からは31円UPの1,072円とすることが検討されています。 人手不足の状況が加速する中で、確保した人材を離さないためにも企業側はさらに賃金を上げるなどの工夫が強いられています。 さらにロシア-ウクライナ間情勢もあり、様々な原材料価格が急激なスピードで高騰しています。つまり、飲食業では「原価」が上限なく急激なスピードで高騰しているのです。 これは、飲食業に限った話ではなく、製造業にも置き換えることができる内容です。 2.3Kから脱却&原価を抑えるための“AIロボット活用” 製造業の労働環境について、よく「3K(きつい、汚い、危険)」という表現が用いられます。これは、飲食業界にとっても同じです。 そこで現在、食品製造業にとどまらず外食産業業でもAIロボット技術への関心が高まっています。 例えば、Flippyというシステムは高温の油で揚げるような厨房での危険な仕事を人間のスタッフの代わりに行うことができます。 このとき、FlippyはAIを用いて食品を区別してフライヤーに入れることができ、油で揚げてから別の容器に移す最終工程までを完了させることができます。 ここでポイントなのは「AI」を活用しているという点です。机上で設定したものを量産するのが従来のロボットの概念でしたが、AIを用いることでその場の温度や湿度、分類されていない原材料の分別なども加味することができます。 さらに最近では、ファミリーマート経済産業省店にAIシステムを導入したロボット『TX SCARA』が導入されました。 これは、独自のAIシステム『Gordon』の自動制御により、バックヤードなどの狭いスペースで稼働可能となる水平多関節型のロボットです。 このAIロボットの導入で一日約1,000本行われている飲料陳列業務を、ロボットが人に代わって24時間担うことができます。 重いペットボトルなどの陳列は3Kの一つとしてカウントできると考えられますが、この「きつい」業務をロボットに置き換えることができるため従業員の負担が減り、従業員は売り場を離れることなく接客業務などのより付加価値の高い業務に取り組むことができます。 今回は飲食業で普及が進むAIロボットについてご紹介しました。特に製造業の皆様においては、飲食業界は他人事ではないかと思います。 加速する原価高騰への対策として、導入を検討してみてはいかがでしょうか。   ■【無料ダウンロード】工場のAI化・デジタル化最新事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://lp.funaisoken.co.jp/mt/smart-factory/dltext04-01-dl.html?txt=%E3%80%90%E4%B8%AD%E5%A0%85%E3%83%BB%E4%B8%AD%E5%B0%8F%E8%A3%BD%E9%80%A0%E6%A5%AD%20%E7%B5%8C%E5%96%B6%E8%80%85%E6%A7%98%E5%90%91%E3%81%91%E3%80%91%22%E5%B7%A5%E5%A0%B4%E3%81%AEAI%E3%83%BB%E3%83%87%E3%82%B8%E3%82%BF%E3%83%AB%E5%8C%96%22%20%E6%9C%80%E6%96%B0%E4%BA%8B%E4%BE%8B%E8%A7%A3%E8%AA%AC%E3%83%AC%E3%83%9D%E3%83%BC%E3%83%88 「AIやデジタルツールなどを使うことで、工場内のどのような課題を解決できるのか?」 「工場のDX(デジタルトランスフォーメーション)に関して、具体的な事例を知りたい」 本レポートでは、「工場のAI・デジタル化」にテーマを絞った上で、各種事例をご紹介いたします。 【事例①】AI活用を通じて「見積もり業務の標準化・脱属人化」を推進 【事例②】AIを活用した「類似案件検索システム」の確立 【事例③】AIを活用した外観検査体制の構築 【事例④】現場に散乱していた生産日報・日常点検表等のペーパーレス化を実現 【事例⑤】メンテナンス事業の案件情報一元管理 【事例⑥】営業担当者のワンストップ簡易設計システムの構築 【事例⑦】クラウドIoTによる設備の故障予知   ■オンラインセミナー開催のお知らせ 【メーカー経営者のためのAI活用戦略セミナー】~取り組み事例に学ぶ!メーカー経営にAIを活⽤する具体的⽅法とは!!~ 無料ダウンロードはこちらから https://www.funaisoken.co.jp/seminar/088304   このような方にオススメ 自社の経営にAIがどう適用できるかを知りたいメーカー経営者の方 営業がまだまだ属人的で、営業スタッフ個人のスキルに依存していると感じているメーカー経営者の方 商品企画や設計開発部門でノウハウが標準化されずに人材育成が遅れていると感じているメーカー経営者の方 生産技術・生産管理部門も特定の熟練者に知見とノウハウが集中していると感じているメーカー経営者の方 製造部門では熟練技術・職人的な業務があり、属人化・ブラックBOX化していると感じているメーカー経営者の方 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/088304  

工場へのロボット導入を支援するロボット導入コンサルティングとは

2022.08.02

1.中小製造業におけるロボット活用の現状 まず、結論から言うと製造業における就業者数は年々減少傾向、製造業の作業工数は ロボットに置き換えていかざるを得ないと言えるでしょう。 政府統計の主な産業別就業者数を見ると、製造業の就業者数は年々減少傾向にあります。 今後、人材の争奪戦になることは必至であり、中小製造業におけるロボット活用によるリソースの確保は最重要課題です。 厚生労働省雇用動向調査によると「新規学卒入職者数の製造業への入職割合」は2000年時点の17.3%から2016年には11.1%へと減少しています。 また、「中小企業における産業別従業員数過不足DIの推移」は2009年以降減少傾向にあり、2018年の第1四半期にはマイナス23.1%に落ち込みました。 人材確保の問題は、熟練技能者からの技術継承の受け手となる人材がいない、という問題につながっています。ロボットの積極的な活用により製造業が若手にとって魅力のある職種になる必要があります。 熟練の職人には価値のある熟練作業を、そして若手にはロボットを活用した職人技術の継承を、そのような形が理想となります。 2.中小製造業の工場へのロボット導入における課題 中小製造業の工場へのロボット導入の大きな課題として多品種少量生産であることがあげられます。 大量生産のロボット化・自動化とは異なり多品種少量生産のロボット化・自動化には様々な課題があります。 多品種少量生産ゆえの自動化量産効果の見えづらさ、段取り替え頻度の高さとそれに必要な時間と手間、多品種少量生産に対応するための要件定義の難しさとシステムコストの増大、このように中小製造業、特に多品種少量生産を行う中小製造業の工場へのロボット導入は一筋縄ではいきません。 では、どのようにして中小製造業の多品種少量生産現場へロボットを導入するのでしょうか? 答えは 作業分析 製品分析 です。 作業分析と製品分析を行い対象とする作業及び対象とするワークを選定します。 対象とする作業とワークから必要な要件、技術を調査検討しロボット化構想を練り上げていきます。 この「分析」と「要件、技術調査からの構想」が重要です。分析により投資金額の上限が見えます。 見えた投資金額からロボットシステム投資をどの程度にするべきか、ある程度の見込みをつけます。 その上で、構想したロボットシステムがどの程度の投資対効果があるかを検証します。 多品種少量生産におけるロボット化・自動化はロボットを導入するユーザー自体がそれなりの知識と経験を持っていることが必要となります。 多品種少量生産のロボット化・自動化においては、いかにロボット稼働率を上げ(段取り替えロスを少なくし)、いかに投資対効果を捻出し(低投資で最大の効果を出し)、いかに生産性を向上させるか(浮いた工数をどう活用するか)、が重要でSIer任せの構想設計ではなくユーザーの技量が大きく関わってきます。 3.工場へのロボット導入を支援するロボット導入コンサルティングとは 本サイトを運営している船井総合研究所には現場を熟知した専門のロボット導入支援 コンサルタントが在籍しています。 2項に挙げた「分析」、「構想」を専門コンサルタントが代行します。 大まかな流れは以下です。 ①簡易現状ヒアリング→ロボット化の可否判断 ②詳細現状ヒアリング・現場診断・工程分析 ③ロボット化構想提案 ④要件定義(構想図作成) ⑤導入後効果算定・簡易投資シミュレーション ⑥投資の可否判断 (⑦詳細設計・製作・設置) ⑧設置後調整・活用 ※()はロボットシステムメーカーにて実施 上記を専門コンサルタントが代行することで中小製造業の多品種少量生産工場でもロボット導入を成功させることが可能です。 全国各地の様々なロボット導入事例を日々研究しているコンサルタントだからこそ、多種多様な現場に合わせた分析と構想が可能です。 4.ロボット導入支援コンサルタントを依頼する方法 ロボット導入支援コンサルタントを希望の方は以下のお問い合わせフォームより お申し込み下さい。 https://lp.funaisoken.co.jp/mt/form01/inquiry-S045.html?siteno=S045 また、船井総合研究所ではロボット、AIの導入に役立つ無料ダウンロードレポートを ご用意しております。 下記のページからお申し込み下さい。 https://smart-factory.funaisoken.co.jp/download/   ■製造業経営者様限定!工場のロボット活用事例レポート ロボット活用の現状とポイント、成功事例をこの1冊に集約! 製造業の経営者限定でダウンロード可能な特別版!! ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_01068   ■製造業の経営者様限定でダウンロード可能な特別なレポートです! 「こうなりたい!」と思っている経営者様におすすめ 中小製造業のロボット活用の現状を知りたい! 中小製造業のロボット活用のポイントを知りたい! 中小製造業のロボット活用の成功事例を知りたい! 目次 1、中小製造業のロボット活用の現状 2、中小製造業のロボット活用のポイント 3、中小製造業のロボット活用事例 レポートの内容 製造業の経営者限定でダウンロード可能な特別版!! 国内中小製造業のロボット活用における現状、ポイント、成功事例をこの1冊にまとめました!! このレポートを読むメリット 中小製造業のロボット活用の現状、ポイント、成功事例が一度に分かる!   ■オンラインセミナー開催のお知らせ 多品種少量生産機械加工業のロボット活用!社長セミナー ▼セミナーお申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/event/   このような方にオススメ マシニングセンタ・NC旋盤・各種加工機等を保有している機械加工業の社長様 多品種少量生産している機械加工業の社長様 現場スタッフに課題があり人手を掛けずに生産量を増やしたいと考えている社長様 ロボット化により夜間稼働や休日稼働をすることで生産性を上げたいと思われる社長様 ロボット活用にこれから取り組みたいが、どのように始めれば良いか分からない社長様 ■講座内容 ・第1講座 多品種少量生産の機械加工業のロボット取組事例 ・社員数わずか20名!機械加工会社が多品種対応のロボット化により24時間稼働達成! ・社員数30名の機械加工会社が加工機への供給・取出し業務と検査測定業務をロボット化! ・段替え作業不要!多品種少量生産対応型!NC旋盤への供給・取出し・段替えロボットを導入! ・社員数10名の多品種少量生産の機械加工会社が協働ロボットを導入! ・社員数わずか6名の機械加工会社が自社で協働ロボットの導入に成功! ・第2講座 多品種少量生産の機械加工業の社長が取り組むべきロボット戦略 ・ロボットによる夜間稼働&休日稼働で人手を増やさずに生産性を上げる! ・ロボット活用で生産量UP!原価率削減!社長が取るべき経営手法! ・ロボットと協働する機械加工業のものづくり戦略! ■開催日程 全てオンライン開催となります 下記いずれかの日程よりご都合の良い日程をお選び下さい 2022/08/16 (火) 13:00~15:00 2022/08/18 (木) 13:00~15:00 2022/08/23 (火) 13:00~15:00 2022/08/24 (水) 13:00~15:00 お申し込みはこちらから⇒ このセミナーは終了しました。最新のセミナーはこちらから。 https://smart-factory.funaisoken.co.jp/event/   1.中小製造業におけるロボット活用の現状 まず、結論から言うと製造業における就業者数は年々減少傾向、製造業の作業工数は ロボットに置き換えていかざるを得ないと言えるでしょう。 政府統計の主な産業別就業者数を見ると、製造業の就業者数は年々減少傾向にあります。 今後、人材の争奪戦になることは必至であり、中小製造業におけるロボット活用によるリソースの確保は最重要課題です。 厚生労働省雇用動向調査によると「新規学卒入職者数の製造業への入職割合」は2000年時点の17.3%から2016年には11.1%へと減少しています。 また、「中小企業における産業別従業員数過不足DIの推移」は2009年以降減少傾向にあり、2018年の第1四半期にはマイナス23.1%に落ち込みました。 人材確保の問題は、熟練技能者からの技術継承の受け手となる人材がいない、という問題につながっています。ロボットの積極的な活用により製造業が若手にとって魅力のある職種になる必要があります。 熟練の職人には価値のある熟練作業を、そして若手にはロボットを活用した職人技術の継承を、そのような形が理想となります。 2.中小製造業の工場へのロボット導入における課題 中小製造業の工場へのロボット導入の大きな課題として多品種少量生産であることがあげられます。 大量生産のロボット化・自動化とは異なり多品種少量生産のロボット化・自動化には様々な課題があります。 多品種少量生産ゆえの自動化量産効果の見えづらさ、段取り替え頻度の高さとそれに必要な時間と手間、多品種少量生産に対応するための要件定義の難しさとシステムコストの増大、このように中小製造業、特に多品種少量生産を行う中小製造業の工場へのロボット導入は一筋縄ではいきません。 では、どのようにして中小製造業の多品種少量生産現場へロボットを導入するのでしょうか? 答えは 作業分析 製品分析 です。 作業分析と製品分析を行い対象とする作業及び対象とするワークを選定します。 対象とする作業とワークから必要な要件、技術を調査検討しロボット化構想を練り上げていきます。 この「分析」と「要件、技術調査からの構想」が重要です。分析により投資金額の上限が見えます。 見えた投資金額からロボットシステム投資をどの程度にするべきか、ある程度の見込みをつけます。 その上で、構想したロボットシステムがどの程度の投資対効果があるかを検証します。 多品種少量生産におけるロボット化・自動化はロボットを導入するユーザー自体がそれなりの知識と経験を持っていることが必要となります。 多品種少量生産のロボット化・自動化においては、いかにロボット稼働率を上げ(段取り替えロスを少なくし)、いかに投資対効果を捻出し(低投資で最大の効果を出し)、いかに生産性を向上させるか(浮いた工数をどう活用するか)、が重要でSIer任せの構想設計ではなくユーザーの技量が大きく関わってきます。 3.工場へのロボット導入を支援するロボット導入コンサルティングとは 本サイトを運営している船井総合研究所には現場を熟知した専門のロボット導入支援 コンサルタントが在籍しています。 2項に挙げた「分析」、「構想」を専門コンサルタントが代行します。 大まかな流れは以下です。 ①簡易現状ヒアリング→ロボット化の可否判断 ②詳細現状ヒアリング・現場診断・工程分析 ③ロボット化構想提案 ④要件定義(構想図作成) ⑤導入後効果算定・簡易投資シミュレーション ⑥投資の可否判断 (⑦詳細設計・製作・設置) ⑧設置後調整・活用 ※()はロボットシステムメーカーにて実施 上記を専門コンサルタントが代行することで中小製造業の多品種少量生産工場でもロボット導入を成功させることが可能です。 全国各地の様々なロボット導入事例を日々研究しているコンサルタントだからこそ、多種多様な現場に合わせた分析と構想が可能です。 4.ロボット導入支援コンサルタントを依頼する方法 ロボット導入支援コンサルタントを希望の方は以下のお問い合わせフォームより お申し込み下さい。 https://lp.funaisoken.co.jp/mt/form01/inquiry-S045.html?siteno=S045 また、船井総合研究所ではロボット、AIの導入に役立つ無料ダウンロードレポートを ご用意しております。 下記のページからお申し込み下さい。 https://smart-factory.funaisoken.co.jp/download/   ■製造業経営者様限定!工場のロボット活用事例レポート ロボット活用の現状とポイント、成功事例をこの1冊に集約! 製造業の経営者限定でダウンロード可能な特別版!! ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_01068   ■製造業の経営者様限定でダウンロード可能な特別なレポートです! 「こうなりたい!」と思っている経営者様におすすめ 中小製造業のロボット活用の現状を知りたい! 中小製造業のロボット活用のポイントを知りたい! 中小製造業のロボット活用の成功事例を知りたい! 目次 1、中小製造業のロボット活用の現状 2、中小製造業のロボット活用のポイント 3、中小製造業のロボット活用事例 レポートの内容 製造業の経営者限定でダウンロード可能な特別版!! 国内中小製造業のロボット活用における現状、ポイント、成功事例をこの1冊にまとめました!! このレポートを読むメリット 中小製造業のロボット活用の現状、ポイント、成功事例が一度に分かる!   ■オンラインセミナー開催のお知らせ 多品種少量生産機械加工業のロボット活用!社長セミナー ▼セミナーお申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/event/   このような方にオススメ マシニングセンタ・NC旋盤・各種加工機等を保有している機械加工業の社長様 多品種少量生産している機械加工業の社長様 現場スタッフに課題があり人手を掛けずに生産量を増やしたいと考えている社長様 ロボット化により夜間稼働や休日稼働をすることで生産性を上げたいと思われる社長様 ロボット活用にこれから取り組みたいが、どのように始めれば良いか分からない社長様 ■講座内容 ・第1講座 多品種少量生産の機械加工業のロボット取組事例 ・社員数わずか20名!機械加工会社が多品種対応のロボット化により24時間稼働達成! ・社員数30名の機械加工会社が加工機への供給・取出し業務と検査測定業務をロボット化! ・段替え作業不要!多品種少量生産対応型!NC旋盤への供給・取出し・段替えロボットを導入! ・社員数10名の多品種少量生産の機械加工会社が協働ロボットを導入! ・社員数わずか6名の機械加工会社が自社で協働ロボットの導入に成功! ・第2講座 多品種少量生産の機械加工業の社長が取り組むべきロボット戦略 ・ロボットによる夜間稼働&休日稼働で人手を増やさずに生産性を上げる! ・ロボット活用で生産量UP!原価率削減!社長が取るべき経営手法! ・ロボットと協働する機械加工業のものづくり戦略! ■開催日程 全てオンライン開催となります 下記いずれかの日程よりご都合の良い日程をお選び下さい 2022/08/16 (火) 13:00~15:00 2022/08/18 (木) 13:00~15:00 2022/08/23 (火) 13:00~15:00 2022/08/24 (水) 13:00~15:00 お申し込みはこちらから⇒ このセミナーは終了しました。最新のセミナーはこちらから。 https://smart-factory.funaisoken.co.jp/event/  

加工精度が高いとロボット化できない?熟練技術者のすごさと見える化

2022.08.01

機械加工の自動化を提案することは多々ありますが、その時に旋盤やマシニングなどにロボットを付けましょう!という話が出たときに必ず精度の話が出ます。 また、旋盤を対象にしましょう!と話していると「平面研削を自動化したい!」「円筒研削を自動化したい!」という話になります。これは、特定の熟練技術者に依存しているからだと思います。長い間働いている方にしかできない、その人が辞めたらどうなるのだろう?という危機感から自動化をしたい!という話になります。 私は正直その話になると「困ったな…」と思います。理由は精度以外の何かが結局重要で、しかもそれを実現するためにかなりの費用が掛かるイメージがあるからです。 ですが、まずは基本に立ち直り自動化する要件を事細かに見れば何とか出来るかな?という感じになります。その時の気づきを今回は書きます。 1.作業分析 何回も書かせていただいているのですが、結局作業分析が一番重要です。 ロボットができることはまだまだ限られているのでボトルネックは技術の壁になります。 まず、今熟練技術者がやっている作業を分解し、理解することが重要です。「~さんがやっていてよくわからない」というのがスタートです。 これではその人がいなくなると技術が途切れてしまう、ということになります。 作業を分析し見える化する、つまりマニュアル化して伝承していくことに近いです。 自動化を考えることと共にマニュアル化もしていきましょう。 2.作業分析から見えること 作業分析をしてみると、平面研削や円筒研削は以下の傾向があるかと思います。 設置することに手の感覚、目の感覚が関わってくる 何に対してどれを使うか、複雑である 位置調整に手の感覚、目の感覚が関わってくる 手の感覚、目の感覚をそのままロボットに反映することが非常に難しく、センサーを駆使すると高価になることが多いです。 色々と実験をしないといけないし、実験時点で金額感が合わず投資を躊躇してしまいます。 まずは、感覚を徹底的に言語化、数値化しましょう。例えば平面研削となると きっちり土台に引っ付ける⇒盤面とワークの面をぴったりつける などになります。 ワークの面と面合わせをしっかりするのにどうしたらよいか?それがテーマになります。 まずは熟練技術者の感覚を“言語化”“数値化”し、SIerに伝えることをしましょう。 ちなみに、この作業はマニュアル化にもつながります。 感覚を新人に伝えても分かりません。何を基準に作業をすべきか?徹底的に伝える努力をしましょう。 3.実をいうと5Sが重要 平面研削、円筒研削はワークに対して精度を要求するために使われます。また、「ワークにキズ無き事」が絶対の条件になりがちです。 「面と面を合わせる」時によくよく聞いてみると、熟練作業者はペタペタ手で触って面を合わせている感じがしますが、この場合指の感覚でワークと面のゴミを探している場合が多いです。 これは切粉などでいわゆる「ハサミキズがないか?」を確認しています。これはロボット化することは非常に難しいです。 工作機械でワークをチャックする時、ハサミキズが必ずテーマになります。それは精度に関わらず、です。 切粉は機械加工業をしていると必ずついてくるテーマです。熟練作業者は結構基本に忠実な人が多いです。 普段から清掃をしっかりしている 仕事に誇りをもっている 一つ一つの作業が丁寧 これをつぶさに観察すると、5Sを意識していることになります。 切粉をきれいに取り除く  ⇒清掃をしっかりしている、自分自身のしつけがしっかりしている イメージです。 普段から5Sを作業員に意識させる。これは非常に難しいことです。 自動化することも大事ですが、まず基本に立ち直り、そもそもキズが発生しにくい環境を実現してから自動化をしていくことが重要です。   ■製造業経営者様限定!工場のロボット活用事例レポート ロボット活用の現状とポイント、成功事例をこの1冊に集約! 製造業の経営者限定でダウンロード可能な特別版!! ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_01068   ■製造業の経営者様限定でダウンロード可能な特別なレポートです! 「こうなりたい!」と思っている経営者様におすすめ 中小製造業のロボット活用の現状を知りたい! 中小製造業のロボット活用のポイントを知りたい! 中小製造業のロボット活用の成功事例を知りたい! 目次 1、中小製造業のロボット活用の現状 2、中小製造業のロボット活用のポイント 3、中小製造業のロボット活用事例 レポートの内容 製造業の経営者限定でダウンロード可能な特別版!! 国内中小製造業のロボット活用における現状、ポイント、成功事例をこの1冊にまとめました!! このレポートを読むメリット 中小製造業のロボット活用の現状、ポイント、成功事例が一度に分かる!   ■オンラインセミナー開催のお知らせ 多品種少量生産機械加工業のロボット活用!社長セミナー ▼セミナーお申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/event/   このような方にオススメ マシニングセンタ・NC旋盤・各種加工機等を保有している機械加工業の社長様 多品種少量生産している機械加工業の社長様 現場スタッフに課題があり人手を掛けずに生産量を増やしたいと考えている社長様 ロボット化により夜間稼働や休日稼働をすることで生産性を上げたいと思われる社長様 ロボット活用にこれから取り組みたいが、どのように始めれば良いか分からない社長様 ■講座内容 ・第1講座 多品種少量生産の機械加工業のロボット取組事例 ・社員数わずか20名!機械加工会社が多品種対応のロボット化により24時間稼働達成! ・社員数30名の機械加工会社が加工機への供給・取出し業務と検査測定業務をロボット化! ・段替え作業不要!多品種少量生産対応型!NC旋盤への供給・取出し・段替えロボットを導入! ・社員数10名の多品種少量生産の機械加工会社が協働ロボットを導入! ・社員数わずか6名の機械加工会社が自社で協働ロボットの導入に成功! ・第2講座 多品種少量生産の機械加工業の社長が取り組むべきロボット戦略 ・ロボットによる夜間稼働&休日稼働で人手を増やさずに生産性を上げる! ・ロボット活用で生産量UP!原価率削減!社長が取るべき経営手法! ・ロボットと協働する機械加工業のものづくり戦略! ■開催日程 全てオンライン開催となります 下記いずれかの日程よりご都合の良い日程をお選び下さい 2022/08/16 (火) 13:00~15:00 2022/08/18 (木) 13:00~15:00 2022/08/23 (火) 13:00~15:00 2022/08/24 (水) 13:00~15:00 お申し込みはこちらから⇒ このセミナーは終了しました。最新のセミナーはこちらから。 https://smart-factory.funaisoken.co.jp/event/   機械加工の自動化を提案することは多々ありますが、その時に旋盤やマシニングなどにロボットを付けましょう!という話が出たときに必ず精度の話が出ます。 また、旋盤を対象にしましょう!と話していると「平面研削を自動化したい!」「円筒研削を自動化したい!」という話になります。これは、特定の熟練技術者に依存しているからだと思います。長い間働いている方にしかできない、その人が辞めたらどうなるのだろう?という危機感から自動化をしたい!という話になります。 私は正直その話になると「困ったな…」と思います。理由は精度以外の何かが結局重要で、しかもそれを実現するためにかなりの費用が掛かるイメージがあるからです。 ですが、まずは基本に立ち直り自動化する要件を事細かに見れば何とか出来るかな?という感じになります。その時の気づきを今回は書きます。 1.作業分析 何回も書かせていただいているのですが、結局作業分析が一番重要です。 ロボットができることはまだまだ限られているのでボトルネックは技術の壁になります。 まず、今熟練技術者がやっている作業を分解し、理解することが重要です。「~さんがやっていてよくわからない」というのがスタートです。 これではその人がいなくなると技術が途切れてしまう、ということになります。 作業を分析し見える化する、つまりマニュアル化して伝承していくことに近いです。 自動化を考えることと共にマニュアル化もしていきましょう。 2.作業分析から見えること 作業分析をしてみると、平面研削や円筒研削は以下の傾向があるかと思います。 設置することに手の感覚、目の感覚が関わってくる 何に対してどれを使うか、複雑である 位置調整に手の感覚、目の感覚が関わってくる 手の感覚、目の感覚をそのままロボットに反映することが非常に難しく、センサーを駆使すると高価になることが多いです。 色々と実験をしないといけないし、実験時点で金額感が合わず投資を躊躇してしまいます。 まずは、感覚を徹底的に言語化、数値化しましょう。例えば平面研削となると きっちり土台に引っ付ける⇒盤面とワークの面をぴったりつける などになります。 ワークの面と面合わせをしっかりするのにどうしたらよいか?それがテーマになります。 まずは熟練技術者の感覚を“言語化”“数値化”し、SIerに伝えることをしましょう。 ちなみに、この作業はマニュアル化にもつながります。 感覚を新人に伝えても分かりません。何を基準に作業をすべきか?徹底的に伝える努力をしましょう。 3.実をいうと5Sが重要 平面研削、円筒研削はワークに対して精度を要求するために使われます。また、「ワークにキズ無き事」が絶対の条件になりがちです。 「面と面を合わせる」時によくよく聞いてみると、熟練作業者はペタペタ手で触って面を合わせている感じがしますが、この場合指の感覚でワークと面のゴミを探している場合が多いです。 これは切粉などでいわゆる「ハサミキズがないか?」を確認しています。これはロボット化することは非常に難しいです。 工作機械でワークをチャックする時、ハサミキズが必ずテーマになります。それは精度に関わらず、です。 切粉は機械加工業をしていると必ずついてくるテーマです。熟練作業者は結構基本に忠実な人が多いです。 普段から清掃をしっかりしている 仕事に誇りをもっている 一つ一つの作業が丁寧 これをつぶさに観察すると、5Sを意識していることになります。 切粉をきれいに取り除く  ⇒清掃をしっかりしている、自分自身のしつけがしっかりしている イメージです。 普段から5Sを作業員に意識させる。これは非常に難しいことです。 自動化することも大事ですが、まず基本に立ち直り、そもそもキズが発生しにくい環境を実現してから自動化をしていくことが重要です。   ■製造業経営者様限定!工場のロボット活用事例レポート ロボット活用の現状とポイント、成功事例をこの1冊に集約! 製造業の経営者限定でダウンロード可能な特別版!! ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_01068   ■製造業の経営者様限定でダウンロード可能な特別なレポートです! 「こうなりたい!」と思っている経営者様におすすめ 中小製造業のロボット活用の現状を知りたい! 中小製造業のロボット活用のポイントを知りたい! 中小製造業のロボット活用の成功事例を知りたい! 目次 1、中小製造業のロボット活用の現状 2、中小製造業のロボット活用のポイント 3、中小製造業のロボット活用事例 レポートの内容 製造業の経営者限定でダウンロード可能な特別版!! 国内中小製造業のロボット活用における現状、ポイント、成功事例をこの1冊にまとめました!! このレポートを読むメリット 中小製造業のロボット活用の現状、ポイント、成功事例が一度に分かる!   ■オンラインセミナー開催のお知らせ 多品種少量生産機械加工業のロボット活用!社長セミナー ▼セミナーお申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/event/   このような方にオススメ マシニングセンタ・NC旋盤・各種加工機等を保有している機械加工業の社長様 多品種少量生産している機械加工業の社長様 現場スタッフに課題があり人手を掛けずに生産量を増やしたいと考えている社長様 ロボット化により夜間稼働や休日稼働をすることで生産性を上げたいと思われる社長様 ロボット活用にこれから取り組みたいが、どのように始めれば良いか分からない社長様 ■講座内容 ・第1講座 多品種少量生産の機械加工業のロボット取組事例 ・社員数わずか20名!機械加工会社が多品種対応のロボット化により24時間稼働達成! ・社員数30名の機械加工会社が加工機への供給・取出し業務と検査測定業務をロボット化! ・段替え作業不要!多品種少量生産対応型!NC旋盤への供給・取出し・段替えロボットを導入! ・社員数10名の多品種少量生産の機械加工会社が協働ロボットを導入! ・社員数わずか6名の機械加工会社が自社で協働ロボットの導入に成功! ・第2講座 多品種少量生産の機械加工業の社長が取り組むべきロボット戦略 ・ロボットによる夜間稼働&休日稼働で人手を増やさずに生産性を上げる! ・ロボット活用で生産量UP!原価率削減!社長が取るべき経営手法! ・ロボットと協働する機械加工業のものづくり戦略! ■開催日程 全てオンライン開催となります 下記いずれかの日程よりご都合の良い日程をお選び下さい 2022/08/16 (火) 13:00~15:00 2022/08/18 (木) 13:00~15:00 2022/08/23 (火) 13:00~15:00 2022/08/24 (水) 13:00~15:00 お申し込みはこちらから⇒ このセミナーは終了しました。最新のセミナーはこちらから。 https://smart-factory.funaisoken.co.jp/event/  

溶接ロボット活用!!国際ウェルディングショーからみられる今後の溶接業界の自動化

2022.07.25

1.今後の溶接業界の自動化はどうなるか? 2022年7月東京ビッグサイトで開催された国際ウェルディングショーに行ってきました。 ロボットメーカーや老舗Sier様やスタートアッ等様々な企業様が溶接に関連するソリューションや機器・部品を展示しており見どころ沢山な展示会でした。 中でも特に目を引いたのは、協働ロボットを活用した溶接システムでした。 FUNAC・安川・PANASONIC・ダイヘン等各社ロボットメーカーは自社の協働ロボットにMIGやTIGの溶接電源を組み込んだソリューションを展示していました。 ロボットメーカー以外でも多くのSier様が協働ロボットのソリューションを展示しており、溶接業界への協働ロボット活用が期待されている事を肌感覚で感じる事が出来ました。 従来の産業用ロボットの溶接への活用については、技術的にかなり成熟されてきておりますが、現場での活用に対しては未だに課題が多く、ロボットユーザも多くの場合低い稼働率とエラー修正(ティーチング修正)等に頭を悩ませています。 対して協働ロボットを溶接に活用する事で得られるメリットは非常に多く、これまでの生産現場での活用とは一線画した活用が見込める為、メーカーやSierはもちろん、エンドユーザの注目度も非常に高まっています。 今後10年の溶接業界は協働ロボット活用が主流になりそうな予感がしますね。 それでは展示されていたソリューションを例に協働ロボットを活用するメリットを解説していこうと思います。 2.溶接の自動化における協働ロボット活用のメリット まずは、協働ロボットを活用するメリットとして 初心者でもティーチングが簡単 省スペースでの設置が可能 低価格で導入しやすい があります。 協働ロボットは、ダイレクトティーチングという手でロボットハンドを動かして教示させる方法が用いられており、初心者でも簡単にティーチングが可能です。 タッチパネルでの直観的な操作でロボット動作フローを作成する事も出来ますし、溶接電源とリンクさせて溶接電流やパルス等の設定もすべてタッチパネル内で調整する事が可能です。 次に協働ロボットは軽量で場所を取らないため、生産設備内のレイアウトを変更することなくさまざまな用途に応じて配置できます。 展示会でもほとんどのソリューションにはキャスタ付の作業台とロボットがアッセンブリされており、キャスターにてどこにでも移動できる様になっておりました。 短時間で簡単に段替えを行えるため、多品種少量生産の生産ラインでも大いに活躍できます。 そして、協働ロボットは人と同じ環境で作業ができることを目的としたロボットのため、安全柵がなくても使用できます。 産業用ロボットと協働ロボット単体で価格を比較すると協働ロボットの方が価格は高い事が多いですが、安全策や周辺機器が不要なので、システム全体の価格を抑制する事が可能です 最近では性能が良く価格が安い台湾製の協働ロボットも人気でこれまでの産業用ロボットと変わらない金額で購入する事も可能になってきております。 次に溶接加工を協働ロボットにさせるメリットを述べていきたいと思います。 小物かつ個数を要する部品(リピート性があり、細かな溶接が多く手間が掛かるが沢山作る) 試作品(リピート性が無く専用の治具製作が出来ない) 1品1様な製品の製作(リピート性が無く専用の治具製作が出来ない) まず上記の様な場合での活用が期待出来ます。 多くの現場では子部品を製作する場合、ほとんど人手で単純作業を繰り返して製作している事がほとんどです。 しかし、子部品の多くは溶接も点付けやピッチ溶接等簡単なものが多く、ほとんど付加価値を生んでいない加工に対して、貴重な溶接職人さんの工数を大幅に掛けてしまっていますので、協働ロボットで溶接する事で職人さんをもっと価値の高い業務に集中してもらう事が出来ます。 そして試作や1個単位での受注品などの場合、従来のロボットでは、治具作成やロボットティーチングに掛かる工数や費用を考えるととても採算が合わず、手作業で対応している事と思います。 協働ロボットの長所であるティーチングの簡易さを最大限に発揮し、試作や一品物の現物合わせでティーチングを行い溶接してしまえば良いですし、何より溶接技能や資格を持っていない人でも協働ロボットを扱えれば製作が出来てしまう事でしょう。 このように、多品種少量生産が当たり前の溶接加工業にはとてもマッチしており、活用の幅は今後もどんどん広がっていく事が予想されます。 また従来のロボット溶接から常にある課題として、治具や現物の位置ずれ・歪みによる溶接の狙い位置ずれによる溶接不良やロボットエラーがありますが、これは協働ロボットでも同じ事が言えます。 しかし、今回の展示会では、3Dスキャナーによる現物確認と自動補正や、レーザーセンサーによるリアルタイムトラッキング機能(溶接しながら溶接線へのトーチの位置を修正していく)機能を協働ロボットに組み合わせて活用している事例もありました。 協働ロボットとこのようなロボット補正する機器やソフトウェアと連動して活用する事が出来れば、だれでも使えるほど簡単で品質が良い溶説を実現する事が可能です。 高度な技能が必要な溶接は淑人さんが実施し、簡単な溶接は協働ロボットでさせる。 こんな時代はそう遠く無いでしょうね。 もちろん溶接だけでなく、研磨や塗装・組み立てにも活用する事が出来ますので、極端な話協働ロボット1台あれば、ハンドツールを交換して、今日は研磨、明日は溶接みたいな使い方も可能ですね。 今回の記事で記載した内容はほんのごく一部でまだまだ協働ロボットを活用するメリットはあります。 そしてどんどんと新しい機器やソフトウェアが生まれつつあり、今後の成長が楽しみな分野でもありますので今後も注視して協働ロボット業界をチェックしていきたいと思います。   ■製造業経営者様限定!工場のロボット活用事例レポート ロボット活用の現状とポイント、成功事例をこの1冊に集約! 製造業の経営者限定でダウンロード可能な特別版!! ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_01068   ■製造業の経営者様限定でダウンロード可能な特別なレポートです! 「こうなりたい!」と思っている経営者様におすすめ 中小製造業のロボット活用の現状を知りたい! 中小製造業のロボット活用のポイントを知りたい! 中小製造業のロボット活用の成功事例を知りたい! 目次 1、中小製造業のロボット活用の現状 2、中小製造業のロボット活用のポイント 3、中小製造業のロボット活用事例 レポートの内容 製造業の経営者限定でダウンロード可能な特別版!! 国内中小製造業のロボット活用における現状、ポイント、成功事例をこの1冊にまとめました!! このレポートを読むメリット 中小製造業のロボット活用の現状、ポイント、成功事例が一度に分かる!   ■オンラインセミナー開催のお知らせ 多品種少量生産機械加工業のロボット活用!社長セミナー ▼セミナーお申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/event/   このような方にオススメ マシニングセンタ・NC旋盤・各種加工機等を保有している機械加工業の社長様 多品種少量生産している機械加工業の社長様 現場スタッフに課題があり人手を掛けずに生産量を増やしたいと考えている社長様 ロボット化により夜間稼働や休日稼働をすることで生産性を上げたいと思われる社長様 ロボット活用にこれから取り組みたいが、どのように始めれば良いか分からない社長様 ■講座内容 ・第1講座 AI導入事例講座「メーカーでのAI取組事例」 多品種少量生産の機械加工業のロボット取組事例 ・社員数わずか20名!機械加工会社が多品種対応のロボット化により24時間稼働達成! ・社員数30名の機械加工会社が加工機への供給・取出し業務と検査測定業務をロボット化! ・段替え作業不要!多品種少量生産対応型!NC旋盤への供給・取出し・段替えロボットを導入! ・社員数10名の多品種少量生産の機械加工会社が協働ロボットを導入! ・社員数わずか6名の機械加工会社が自社で協働ロボットの導入に成功! ・第2講座 多品種少量生産の機械加工業の社長が取り組むべきロボット戦略 ・ロボットによる夜間稼働&休日稼働で人手を増やさずに生産性を上げる! ・ロボット活用で生産量UP!原価率削減!社長が取るべき経営手法! ・ロボットと協働する機械加工業のものづくり戦略! ■開催日程 全てオンライン開催となります 下記いずれかの日程よりご都合の良い日程をお選び下さい 2022/08/16 (火) 13:00~15:00 2022/08/18 (木) 13:00~15:00 2022/08/23 (火) 13:00~15:00 2022/08/24 (水) 13:00~15:00 お申し込みはこちらから⇒ このセミナーは終了しました。最新のセミナーはこちらから。 https://smart-factory.funaisoken.co.jp/event/   1.今後の溶接業界の自動化はどうなるか? 2022年7月東京ビッグサイトで開催された国際ウェルディングショーに行ってきました。 ロボットメーカーや老舗Sier様やスタートアッ等様々な企業様が溶接に関連するソリューションや機器・部品を展示しており見どころ沢山な展示会でした。 中でも特に目を引いたのは、協働ロボットを活用した溶接システムでした。 FUNAC・安川・PANASONIC・ダイヘン等各社ロボットメーカーは自社の協働ロボットにMIGやTIGの溶接電源を組み込んだソリューションを展示していました。 ロボットメーカー以外でも多くのSier様が協働ロボットのソリューションを展示しており、溶接業界への協働ロボット活用が期待されている事を肌感覚で感じる事が出来ました。 従来の産業用ロボットの溶接への活用については、技術的にかなり成熟されてきておりますが、現場での活用に対しては未だに課題が多く、ロボットユーザも多くの場合低い稼働率とエラー修正(ティーチング修正)等に頭を悩ませています。 対して協働ロボットを溶接に活用する事で得られるメリットは非常に多く、これまでの生産現場での活用とは一線画した活用が見込める為、メーカーやSierはもちろん、エンドユーザの注目度も非常に高まっています。 今後10年の溶接業界は協働ロボット活用が主流になりそうな予感がしますね。 それでは展示されていたソリューションを例に協働ロボットを活用するメリットを解説していこうと思います。 2.溶接の自動化における協働ロボット活用のメリット まずは、協働ロボットを活用するメリットとして 初心者でもティーチングが簡単 省スペースでの設置が可能 低価格で導入しやすい があります。 協働ロボットは、ダイレクトティーチングという手でロボットハンドを動かして教示させる方法が用いられており、初心者でも簡単にティーチングが可能です。 タッチパネルでの直観的な操作でロボット動作フローを作成する事も出来ますし、溶接電源とリンクさせて溶接電流やパルス等の設定もすべてタッチパネル内で調整する事が可能です。 次に協働ロボットは軽量で場所を取らないため、生産設備内のレイアウトを変更することなくさまざまな用途に応じて配置できます。 展示会でもほとんどのソリューションにはキャスタ付の作業台とロボットがアッセンブリされており、キャスターにてどこにでも移動できる様になっておりました。 短時間で簡単に段替えを行えるため、多品種少量生産の生産ラインでも大いに活躍できます。 そして、協働ロボットは人と同じ環境で作業ができることを目的としたロボットのため、安全柵がなくても使用できます。 産業用ロボットと協働ロボット単体で価格を比較すると協働ロボットの方が価格は高い事が多いですが、安全策や周辺機器が不要なので、システム全体の価格を抑制する事が可能です 最近では性能が良く価格が安い台湾製の協働ロボットも人気でこれまでの産業用ロボットと変わらない金額で購入する事も可能になってきております。 次に溶接加工を協働ロボットにさせるメリットを述べていきたいと思います。 小物かつ個数を要する部品(リピート性があり、細かな溶接が多く手間が掛かるが沢山作る) 試作品(リピート性が無く専用の治具製作が出来ない) 1品1様な製品の製作(リピート性が無く専用の治具製作が出来ない) まず上記の様な場合での活用が期待出来ます。 多くの現場では子部品を製作する場合、ほとんど人手で単純作業を繰り返して製作している事がほとんどです。 しかし、子部品の多くは溶接も点付けやピッチ溶接等簡単なものが多く、ほとんど付加価値を生んでいない加工に対して、貴重な溶接職人さんの工数を大幅に掛けてしまっていますので、協働ロボットで溶接する事で職人さんをもっと価値の高い業務に集中してもらう事が出来ます。 そして試作や1個単位での受注品などの場合、従来のロボットでは、治具作成やロボットティーチングに掛かる工数や費用を考えるととても採算が合わず、手作業で対応している事と思います。 協働ロボットの長所であるティーチングの簡易さを最大限に発揮し、試作や一品物の現物合わせでティーチングを行い溶接してしまえば良いですし、何より溶接技能や資格を持っていない人でも協働ロボットを扱えれば製作が出来てしまう事でしょう。 このように、多品種少量生産が当たり前の溶接加工業にはとてもマッチしており、活用の幅は今後もどんどん広がっていく事が予想されます。 また従来のロボット溶接から常にある課題として、治具や現物の位置ずれ・歪みによる溶接の狙い位置ずれによる溶接不良やロボットエラーがありますが、これは協働ロボットでも同じ事が言えます。 しかし、今回の展示会では、3Dスキャナーによる現物確認と自動補正や、レーザーセンサーによるリアルタイムトラッキング機能(溶接しながら溶接線へのトーチの位置を修正していく)機能を協働ロボットに組み合わせて活用している事例もありました。 協働ロボットとこのようなロボット補正する機器やソフトウェアと連動して活用する事が出来れば、だれでも使えるほど簡単で品質が良い溶説を実現する事が可能です。 高度な技能が必要な溶接は淑人さんが実施し、簡単な溶接は協働ロボットでさせる。 こんな時代はそう遠く無いでしょうね。 もちろん溶接だけでなく、研磨や塗装・組み立てにも活用する事が出来ますので、極端な話協働ロボット1台あれば、ハンドツールを交換して、今日は研磨、明日は溶接みたいな使い方も可能ですね。 今回の記事で記載した内容はほんのごく一部でまだまだ協働ロボットを活用するメリットはあります。 そしてどんどんと新しい機器やソフトウェアが生まれつつあり、今後の成長が楽しみな分野でもありますので今後も注視して協働ロボット業界をチェックしていきたいと思います。   ■製造業経営者様限定!工場のロボット活用事例レポート ロボット活用の現状とポイント、成功事例をこの1冊に集約! 製造業の経営者限定でダウンロード可能な特別版!! ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_01068   ■製造業の経営者様限定でダウンロード可能な特別なレポートです! 「こうなりたい!」と思っている経営者様におすすめ 中小製造業のロボット活用の現状を知りたい! 中小製造業のロボット活用のポイントを知りたい! 中小製造業のロボット活用の成功事例を知りたい! 目次 1、中小製造業のロボット活用の現状 2、中小製造業のロボット活用のポイント 3、中小製造業のロボット活用事例 レポートの内容 製造業の経営者限定でダウンロード可能な特別版!! 国内中小製造業のロボット活用における現状、ポイント、成功事例をこの1冊にまとめました!! このレポートを読むメリット 中小製造業のロボット活用の現状、ポイント、成功事例が一度に分かる!   ■オンラインセミナー開催のお知らせ 多品種少量生産機械加工業のロボット活用!社長セミナー ▼セミナーお申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/event/   このような方にオススメ マシニングセンタ・NC旋盤・各種加工機等を保有している機械加工業の社長様 多品種少量生産している機械加工業の社長様 現場スタッフに課題があり人手を掛けずに生産量を増やしたいと考えている社長様 ロボット化により夜間稼働や休日稼働をすることで生産性を上げたいと思われる社長様 ロボット活用にこれから取り組みたいが、どのように始めれば良いか分からない社長様 ■講座内容 ・第1講座 AI導入事例講座「メーカーでのAI取組事例」 多品種少量生産の機械加工業のロボット取組事例 ・社員数わずか20名!機械加工会社が多品種対応のロボット化により24時間稼働達成! ・社員数30名の機械加工会社が加工機への供給・取出し業務と検査測定業務をロボット化! ・段替え作業不要!多品種少量生産対応型!NC旋盤への供給・取出し・段替えロボットを導入! ・社員数10名の多品種少量生産の機械加工会社が協働ロボットを導入! ・社員数わずか6名の機械加工会社が自社で協働ロボットの導入に成功! ・第2講座 多品種少量生産の機械加工業の社長が取り組むべきロボット戦略 ・ロボットによる夜間稼働&休日稼働で人手を増やさずに生産性を上げる! ・ロボット活用で生産量UP!原価率削減!社長が取るべき経営手法! ・ロボットと協働する機械加工業のものづくり戦略! ■開催日程 全てオンライン開催となります 下記いずれかの日程よりご都合の良い日程をお選び下さい 2022/08/16 (火) 13:00~15:00 2022/08/18 (木) 13:00~15:00 2022/08/23 (火) 13:00~15:00 2022/08/24 (水) 13:00~15:00 お申し込みはこちらから⇒ このセミナーは終了しました。最新のセミナーはこちらから。 https://smart-factory.funaisoken.co.jp/event/  

製造業必見! 6つのステップで解説!原価管理の取り組み方とは?

2022.07.14

日々製造業の企業様とコミュニケーションをとる中で、ここ最近毎日のように話題に上がるのが「原材料の高騰」というキーワードです。 原材料費が高騰する中で、企業が自社だけで出来ることは適切な原価管理を通じた原価低減しかありません。 弊社のコラムでも何度も取り上げておりますが、今回は製造業が取り組むべき原価管理について、6つのステップで解説いたします。 ステップ0:原価管理の目的を明確にする 原価管理を進めるにあたって、最も重要なことは「何のために原価管理を行うのか」という目的を明確にすることです。 目的が不明確なままプロジェクトを開始しても、どんな情報を収集する必要があるかがぶれてしまい、原価管理を達成できなくなります。 よくある原価管理の目的としては、下記のような事項が挙げられます。 損益分岐点を明らかにして、現在の利益を把握するため 製品別個別原価を把握して注力商品を見つけやすくするため 直接原価計算といった原価分析を実施し、社内改善箇所を明確にするため 工程別設備別分析を行い、損失が出ている工程や設備を見つけて改善活動をするため ステップ1:標準単価の設定 原価管理の目的を明確化したら、次は標準原価の設定を行います。 製造業の場合、3つの切り口で標準単価(=製造原価)を設定する必要があります。 ①材料費:製造に必要となる部品の単価など ②労務費:製造に関連する従業員の賃金(チャージ)など ③経費:①・②以外で工場維持に必要な賃料、電気代など 標準単価を設定したら、実際のデータを取得するフェーズに移行します。 次に具体的な取得方法を解説します。 ステップ2:データの取得 先に示した通り、標準単価を設定したら、実際のデータを入力・取得するフェーズに移行します。 具体的には、ステップ1で設定した標準原価に対応する形で実績のデータを取得します。 それぞれの費用に対して必要になるデータ・情報としては下記が挙げられます。 ①材料費:BOM(部品構成表)、材料の購買単価リスト ②労務費:時間チャージ、工程別製造実績時間 ③経費:工場全体の賃料、機械毎稼働時間(機械単位で費用を按分するため) 製造業の場合に特に重要なのは、②労務費に関して「改善したい単位に工程を分けて実績を取得する」ということです。 段取りも含めてピッキング・抜き・曲げ・溶接・組立など工程ごとに実績を取得するのか、それとも工程をある程度まとめてしまって実績をとるかなど、自社の考え方に合わせてデータ取得をすると良いでしょう。 製造業という業種では、特に労務費の実際データ取得に苦労される企業が多いです。 各工程において、どのような実績データを取得するのが良いのか?どのように取得することが現場の負担にならないか?を議論して方法を決定する必要があります。 また、取得したデータを活用するためには、生産管理システムなどの他のシステムへデータ連携することが重要です。データ連携することにより、リアルタイムで実績データを取得することができるので後述する原価計算やデータ分析において即時対応できるといったメリットがあります。 ステップ3:原価計算 データの取得ができたら、標準原価と実績原価を計算します。 標準原価に関しては、ステップ1で設定した標準単価に対して実際に使用した数量や時間数を掛け合わせます。 一方で実績原価は、実際にかかった単価に対して実績数量や時間数を掛け合わせることで算出します。 ここでは、初めからすべてを細かく複雑に計算しようとするのではなく、まずは全製品分計算できる粒度で計算することが今後のステップに向けて重要となります。 ステップ4:差異分析 原価計算の結果を受けて標準原価と実績原価の比較、つまり「差異分析」を行います。 標準原価に対して実績原価が高い場合、なぜその差が生じたのかを分析します。 例えば材料費に関して実績原価が標準原価よりも高かった場合、その原因は標準で想定していたより数量が多かったからなのか、それとも仕入単価が高かったのか等、要素を細かく分けて分析を行います。 差異分析の際には、さまざまな軸で分析結果を出すことでより正確な議論ができるようになります。 しかし、差異分析は後述の改善活動のための手段であるため、できるだけ効率したい作業です。 さまざまな軸で分析することを得意とした分析ソフトや分析ツールを選定し、改善活動の為の工数を確保することが大切です。 ステップ5:改善活動 原価管理の最後のステップとしては、改善活動があります。 ステップ4で標準原価と実績原価になぜ差異が生じているかを分析した後は、その原因を解決するための改善活動を行います。 ステップ4の例で考えると、製造工程での加工ミスにより使用数量が標準より増えたことで実績原価が高くなっていたとします。 その場合、加工ミスを減らし歩留まり率を上げる必要があるため、治具の導入などにより歩留まり率を高めるための施策に取り組むなどの改善活動が考えられます。 以上のように、原価管理は大きく6つのステップで取り組むことが一般的です。 ただ、この工程の中でも特に難しいのは「ステップ2:データの取得」だと考えます。 日々の受注をこなすことで精一杯なのに実績取得のためのオペレーションを増やすことはできない、という企業様は非常に多いです。 弊社ではそのような企業様に対して、工数取得プログラムによる実績取得の効率化や原価計算・BIツールを用いたデータ分析自動化などの事例がございます。 ご興味のある方は下記レポートなどを参考にしていただけますと幸いです。 コラム|製造業必見!原価管理をエクセルで行う方法とそのメリット・デメリット コラム|中小製造業こそ取り組むべき!個別原価管理のススメ コラム|製造業・工場が実践すべきBIツール活用とは?成功事例も紹介   ■無料ダウンロード【製造業向け】補助金×原価管理システムの成功事例レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_01906_S045 目次 1、事例概要 2、当時の課題 3、取組内容 4、効果 5、補助金申請のポイント レポートの内容 補助金を駆使した原価管理システム導入により、業務効率を向上させた製造業の事例です。 手書き日報や手動転記を排除し、リアルタイムなデータ分析を実現した今回の取組は、業務の革新と効率化を実現しました。 どのような原価管理が良いのか? リアルタイムに把握するためにはどのような方法があるのか? 補助金はどのように活用するのが良いのか? といった悩み事に対しての事例を一冊にまとめています。   ■オンラインセミナー開催のお知らせ 「板金加工業の為の儲けの管理!」 社長セミナー ▼セミナーお申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/event/   本セミナーで学べるポイント 従業員200名以下の板金加工・プレス・溶接加工業の社長が知っておくべき原価管理システムが分かる! ~社長の為の生産管理・原価管理システムで「見える化」する具体的な方法が分かります~ 原価管理システムで製品別・取引先別・工程別データ化したものを経営や現場が活用できるように分析する方法がわかる! ~経営や現場が活用できるようにBIを活用してデータ分析をする方法がわかります~ 職人・属人化している生産管理・個別原価管理業務を改善する為のシステムを導入する方法が分かる! ~一部の熟練者・職人に依存している業務にシステムを導入・活用する方法が分かります~ 基礎知識や導入経験がない社長でも個別原価をデータ化してデータ経営する方法がわかります。 ~生産・購買・在庫・原価をシステムで統合的する方法が良く分からない…そんな社長の為のセミナーです~ 個別原価を可視化する事で何が儲かっているのか?儲かっていないのか?が明確になりその具体的な対策が分かる! ~理論・理屈ではなく、自社の現場で実践できるやり方が分かります~ 開催は残り2回!オンライン開催となります。 2022/07/26 (火) 13:00~15:00 2022/07/28 (木) 13:00~15:00 お申し込みはこちらから⇒ このセミナーは終了しました。最新のセミナーはこちらから。 https://smart-factory.funaisoken.co.jp/event/   日々製造業の企業様とコミュニケーションをとる中で、ここ最近毎日のように話題に上がるのが「原材料の高騰」というキーワードです。 原材料費が高騰する中で、企業が自社だけで出来ることは適切な原価管理を通じた原価低減しかありません。 弊社のコラムでも何度も取り上げておりますが、今回は製造業が取り組むべき原価管理について、6つのステップで解説いたします。 ステップ0:原価管理の目的を明確にする 原価管理を進めるにあたって、最も重要なことは「何のために原価管理を行うのか」という目的を明確にすることです。 目的が不明確なままプロジェクトを開始しても、どんな情報を収集する必要があるかがぶれてしまい、原価管理を達成できなくなります。 よくある原価管理の目的としては、下記のような事項が挙げられます。 損益分岐点を明らかにして、現在の利益を把握するため 製品別個別原価を把握して注力商品を見つけやすくするため 直接原価計算といった原価分析を実施し、社内改善箇所を明確にするため 工程別設備別分析を行い、損失が出ている工程や設備を見つけて改善活動をするため ステップ1:標準単価の設定 原価管理の目的を明確化したら、次は標準原価の設定を行います。 製造業の場合、3つの切り口で標準単価(=製造原価)を設定する必要があります。 ①材料費:製造に必要となる部品の単価など ②労務費:製造に関連する従業員の賃金(チャージ)など ③経費:①・②以外で工場維持に必要な賃料、電気代など 標準単価を設定したら、実際のデータを取得するフェーズに移行します。 次に具体的な取得方法を解説します。 ステップ2:データの取得 先に示した通り、標準単価を設定したら、実際のデータを入力・取得するフェーズに移行します。 具体的には、ステップ1で設定した標準原価に対応する形で実績のデータを取得します。 それぞれの費用に対して必要になるデータ・情報としては下記が挙げられます。 ①材料費:BOM(部品構成表)、材料の購買単価リスト ②労務費:時間チャージ、工程別製造実績時間 ③経費:工場全体の賃料、機械毎稼働時間(機械単位で費用を按分するため) 製造業の場合に特に重要なのは、②労務費に関して「改善したい単位に工程を分けて実績を取得する」ということです。 段取りも含めてピッキング・抜き・曲げ・溶接・組立など工程ごとに実績を取得するのか、それとも工程をある程度まとめてしまって実績をとるかなど、自社の考え方に合わせてデータ取得をすると良いでしょう。 製造業という業種では、特に労務費の実際データ取得に苦労される企業が多いです。 各工程において、どのような実績データを取得するのが良いのか?どのように取得することが現場の負担にならないか?を議論して方法を決定する必要があります。 また、取得したデータを活用するためには、生産管理システムなどの他のシステムへデータ連携することが重要です。データ連携することにより、リアルタイムで実績データを取得することができるので後述する原価計算やデータ分析において即時対応できるといったメリットがあります。 ステップ3:原価計算 データの取得ができたら、標準原価と実績原価を計算します。 標準原価に関しては、ステップ1で設定した標準単価に対して実際に使用した数量や時間数を掛け合わせます。 一方で実績原価は、実際にかかった単価に対して実績数量や時間数を掛け合わせることで算出します。 ここでは、初めからすべてを細かく複雑に計算しようとするのではなく、まずは全製品分計算できる粒度で計算することが今後のステップに向けて重要となります。 ステップ4:差異分析 原価計算の結果を受けて標準原価と実績原価の比較、つまり「差異分析」を行います。 標準原価に対して実績原価が高い場合、なぜその差が生じたのかを分析します。 例えば材料費に関して実績原価が標準原価よりも高かった場合、その原因は標準で想定していたより数量が多かったからなのか、それとも仕入単価が高かったのか等、要素を細かく分けて分析を行います。 差異分析の際には、さまざまな軸で分析結果を出すことでより正確な議論ができるようになります。 しかし、差異分析は後述の改善活動のための手段であるため、できるだけ効率したい作業です。 さまざまな軸で分析することを得意とした分析ソフトや分析ツールを選定し、改善活動の為の工数を確保することが大切です。 ステップ5:改善活動 原価管理の最後のステップとしては、改善活動があります。 ステップ4で標準原価と実績原価になぜ差異が生じているかを分析した後は、その原因を解決するための改善活動を行います。 ステップ4の例で考えると、製造工程での加工ミスにより使用数量が標準より増えたことで実績原価が高くなっていたとします。 その場合、加工ミスを減らし歩留まり率を上げる必要があるため、治具の導入などにより歩留まり率を高めるための施策に取り組むなどの改善活動が考えられます。 以上のように、原価管理は大きく6つのステップで取り組むことが一般的です。 ただ、この工程の中でも特に難しいのは「ステップ2:データの取得」だと考えます。 日々の受注をこなすことで精一杯なのに実績取得のためのオペレーションを増やすことはできない、という企業様は非常に多いです。 弊社ではそのような企業様に対して、工数取得プログラムによる実績取得の効率化や原価計算・BIツールを用いたデータ分析自動化などの事例がございます。 ご興味のある方は下記レポートなどを参考にしていただけますと幸いです。 コラム|製造業必見!原価管理をエクセルで行う方法とそのメリット・デメリット コラム|中小製造業こそ取り組むべき!個別原価管理のススメ コラム|製造業・工場が実践すべきBIツール活用とは?成功事例も紹介   ■無料ダウンロード【製造業向け】補助金×原価管理システムの成功事例レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory_smart-factory_01906_S045 目次 1、事例概要 2、当時の課題 3、取組内容 4、効果 5、補助金申請のポイント レポートの内容 補助金を駆使した原価管理システム導入により、業務効率を向上させた製造業の事例です。 手書き日報や手動転記を排除し、リアルタイムなデータ分析を実現した今回の取組は、業務の革新と効率化を実現しました。 どのような原価管理が良いのか? リアルタイムに把握するためにはどのような方法があるのか? 補助金はどのように活用するのが良いのか? といった悩み事に対しての事例を一冊にまとめています。   ■オンラインセミナー開催のお知らせ 「板金加工業の為の儲けの管理!」 社長セミナー ▼セミナーお申し込みはこちら▼ https://smart-factory.funaisoken.co.jp/event/   本セミナーで学べるポイント 従業員200名以下の板金加工・プレス・溶接加工業の社長が知っておくべき原価管理システムが分かる! ~社長の為の生産管理・原価管理システムで「見える化」する具体的な方法が分かります~ 原価管理システムで製品別・取引先別・工程別データ化したものを経営や現場が活用できるように分析する方法がわかる! ~経営や現場が活用できるようにBIを活用してデータ分析をする方法がわかります~ 職人・属人化している生産管理・個別原価管理業務を改善する為のシステムを導入する方法が分かる! ~一部の熟練者・職人に依存している業務にシステムを導入・活用する方法が分かります~ 基礎知識や導入経験がない社長でも個別原価をデータ化してデータ経営する方法がわかります。 ~生産・購買・在庫・原価をシステムで統合的する方法が良く分からない…そんな社長の為のセミナーです~ 個別原価を可視化する事で何が儲かっているのか?儲かっていないのか?が明確になりその具体的な対策が分かる! ~理論・理屈ではなく、自社の現場で実践できるやり方が分かります~ 開催は残り2回!オンライン開催となります。 2022/07/26 (火) 13:00~15:00 2022/07/28 (木) 13:00~15:00 お申し込みはこちらから⇒ このセミナーは終了しました。最新のセミナーはこちらから。 https://smart-factory.funaisoken.co.jp/event/  

働く人全員が取り組むべき「リスキリング」

2022.07.15

1.リスキングとは リスキリングについて、経済産業省は「新しい職業に就くために、あるいは、今の職業で必要とされるスキルの大幅な変化に適応するために、必要なスキルを獲得する/させること」と定義しています。 これは「働く→学ぶ→働く」のサイクルを繰り返すリカレント教育とは「職を離れるか否か」という点で異なり、リスキリングは仕事をしながら学び続けていく前提の言葉と言えます。 また、リスキリングは「これからも職業で価値創出し続けるために必要なスキル」である前提を重視しており、単なる学び直しでもありません。 リスキリングはDX時代の人材戦略において欠かせない存在となり、このリスキリングによってデジタル技術の力を使いながら価値を創造できるように多くの従業員の能力やスキルが再開発されることが期待されています。 2.世界の動き 世界経済会議では、2018年から3年連続で「リスキル革命」と銘打ったセッションが実施されています。 また、2020年年次総会(ダボス会議)では、「2030年までに全世界で10億人をリスキリングする」という宣言をしています。 同会議では、第4次産業革命により、数年で8000万件の仕事が消失する一方で9700万件の新たな仕事が生まれると予想されており、それに備えて「リスキル革命プラットフォーム」の構築も宣言されています。 次に日本における動きを見ていきます。 3.日本の動き 日本においては、先月2022年6月16日に「日本リスキリングコンソーシアム」が発足しました。 これは、国や地方自治体、民間企業などが一体となって、日本全国あらゆる人のスキルをアップデートする「リスキリング」に取り組む新たな試みです。 様々な企業によるトレーニングプログラムの提供や、就職支援、副業・フリーランス・アルバイトなどの幅広いジョブマッチングの機会の提供など、パートナーシップの輪を広げることで、全国の人々が学び続ける機会を設ける予定です。 また、8割を無料で受講できる当サイトは、今後4年間で50万人の受講を目指して220程度の講座を提供することを発表しています。 「日本リスキリングコンソーシアム」:https://japan-reskilling-consortium.jp/ 今回はリスキリングの概要をご紹介しました。所属企業やそれに伴う規模、現職のポジションに関わらず、働く人全員が必須の取り組みと言えます。 今後活発になっていく同分野について、学び始めてみるのはいかがでしょうか。   ■無料ダウンロードAIを活用した類似案件検索システム導入事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory__00595 「こうなりたい!」と思っている経営者様におすすめ 見積作成時はベテラン担当者が過去の経験をフル活用して作成している→特定の担当者依存を解消したい 見積情報の共有範囲が不明確→情報共有を明確化したい 加工時間を参考にする場合は過去のファイルを参照→過去ファイルを探す時間を減らしたい 過去ファイルの存在は勘と経験頼り→勘と経験に依存した業務を無くしたい 目次 1、類似案件検索システムとは 2、類似案件検索システム導入後の効果 レポートの内容 AIを活用した類似案件検索システム導入事例 過去のPDF図面を参照する類似案件検索システム導入事例をご紹介   ■オンラインセミナー開催のお知らせ メーカー経営者のためのAI活用戦略セミナー ▼セミナーお申し込みはこちら▼ https://www.funaisoken.co.jp/seminar/088304   セミナー開催のお知らせ 取り組み事例に学ぶ!メーカー経営にAIを活⽤する具体的⽅法とは!! ■講座内容 ・第1講座 AI導入事例講座「メーカーでのAI取組事例」 営業AI化:営業部門でAIを活用し、属人化した営業スキルの標準化に取り組んでいるメーカーの事例 見積・提案AI化:営業スタッフの見積・提案業務をAIがサポート 受注予測AI化:AIを活用した受注予測により、売上見込みの精度向上 生産計画・生産管理AI化:AIを活用した生産計画・生産管理による生産性UP・利益率UP 生産技術AI化:AIを活用した生産現場での熟練技術の継承 外観検査AI化:AIを活用した外観検査の省人化&工程改善・品質UP 顧客対応AI化:営業時の顧客対応をAIがサポート ・第2講座 AI導入戦略講座「メーカー経営者が取り組むべきAI活用戦略とは」 メーカーの経営にAIを活用する方法 ”経営者目線”で知っておくべき製造業で実践できる具体的なAI活用とは? 漠然とした理論・概論ではなく、現場で即使えて実践的なAI導入手順 ■開催日程(全てオンライン開催) 2022/09/13 (火) 13:00~15:00 2022/09/15 (木) 13:00~15:00 2022/09/21 (水) 13:00~15:00 2022/09/22 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/088304   1.リスキングとは リスキリングについて、経済産業省は「新しい職業に就くために、あるいは、今の職業で必要とされるスキルの大幅な変化に適応するために、必要なスキルを獲得する/させること」と定義しています。 これは「働く→学ぶ→働く」のサイクルを繰り返すリカレント教育とは「職を離れるか否か」という点で異なり、リスキリングは仕事をしながら学び続けていく前提の言葉と言えます。 また、リスキリングは「これからも職業で価値創出し続けるために必要なスキル」である前提を重視しており、単なる学び直しでもありません。 リスキリングはDX時代の人材戦略において欠かせない存在となり、このリスキリングによってデジタル技術の力を使いながら価値を創造できるように多くの従業員の能力やスキルが再開発されることが期待されています。 2.世界の動き 世界経済会議では、2018年から3年連続で「リスキル革命」と銘打ったセッションが実施されています。 また、2020年年次総会(ダボス会議)では、「2030年までに全世界で10億人をリスキリングする」という宣言をしています。 同会議では、第4次産業革命により、数年で8000万件の仕事が消失する一方で9700万件の新たな仕事が生まれると予想されており、それに備えて「リスキル革命プラットフォーム」の構築も宣言されています。 次に日本における動きを見ていきます。 3.日本の動き 日本においては、先月2022年6月16日に「日本リスキリングコンソーシアム」が発足しました。 これは、国や地方自治体、民間企業などが一体となって、日本全国あらゆる人のスキルをアップデートする「リスキリング」に取り組む新たな試みです。 様々な企業によるトレーニングプログラムの提供や、就職支援、副業・フリーランス・アルバイトなどの幅広いジョブマッチングの機会の提供など、パートナーシップの輪を広げることで、全国の人々が学び続ける機会を設ける予定です。 また、8割を無料で受講できる当サイトは、今後4年間で50万人の受講を目指して220程度の講座を提供することを発表しています。 「日本リスキリングコンソーシアム」:https://japan-reskilling-consortium.jp/ 今回はリスキリングの概要をご紹介しました。所属企業やそれに伴う規模、現職のポジションに関わらず、働く人全員が必須の取り組みと言えます。 今後活発になっていく同分野について、学び始めてみるのはいかがでしょうか。   ■無料ダウンロードAIを活用した類似案件検索システム導入事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory__00595 「こうなりたい!」と思っている経営者様におすすめ 見積作成時はベテラン担当者が過去の経験をフル活用して作成している→特定の担当者依存を解消したい 見積情報の共有範囲が不明確→情報共有を明確化したい 加工時間を参考にする場合は過去のファイルを参照→過去ファイルを探す時間を減らしたい 過去ファイルの存在は勘と経験頼り→勘と経験に依存した業務を無くしたい 目次 1、類似案件検索システムとは 2、類似案件検索システム導入後の効果 レポートの内容 AIを活用した類似案件検索システム導入事例 過去のPDF図面を参照する類似案件検索システム導入事例をご紹介   ■オンラインセミナー開催のお知らせ メーカー経営者のためのAI活用戦略セミナー ▼セミナーお申し込みはこちら▼ https://www.funaisoken.co.jp/seminar/088304   セミナー開催のお知らせ 取り組み事例に学ぶ!メーカー経営にAIを活⽤する具体的⽅法とは!! ■講座内容 ・第1講座 AI導入事例講座「メーカーでのAI取組事例」 営業AI化:営業部門でAIを活用し、属人化した営業スキルの標準化に取り組んでいるメーカーの事例 見積・提案AI化:営業スタッフの見積・提案業務をAIがサポート 受注予測AI化:AIを活用した受注予測により、売上見込みの精度向上 生産計画・生産管理AI化:AIを活用した生産計画・生産管理による生産性UP・利益率UP 生産技術AI化:AIを活用した生産現場での熟練技術の継承 外観検査AI化:AIを活用した外観検査の省人化&工程改善・品質UP 顧客対応AI化:営業時の顧客対応をAIがサポート ・第2講座 AI導入戦略講座「メーカー経営者が取り組むべきAI活用戦略とは」 メーカーの経営にAIを活用する方法 ”経営者目線”で知っておくべき製造業で実践できる具体的なAI活用とは? 漠然とした理論・概論ではなく、現場で即使えて実践的なAI導入手順 ■開催日程(全てオンライン開催) 2022/09/13 (火) 13:00~15:00 2022/09/15 (木) 13:00~15:00 2022/09/21 (水) 13:00~15:00 2022/09/22 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/088304  

ロボットをフル活用!ティーチングレスを実現する方法

2022.07.08

▼無料ダウンロードはこちらをクリック 1.はじめに 昨今、日本でも急速にロボット導入が進み、大手・中堅企業はもちろんのこと中小製造業でもロボットが導入されていることが珍しくなくなりました。 しかしながら多くの企業に導入されているものの、実際活用できている企業はほんの一握りなのが現状です。活用できていない原因はいくつかありますが、主な原因の一つが「ティーチング」です。ロボットを動かすためにはロボットに動作を教え込む必要がありそのために必要な作業がティーチングになります。 ティーチング作業は非常に複雑、かつ専門知識を要する作業であり、専門のロボットプログラマーが行うのが一般的です。ロボットを動かすにはペンダント(操作パネル)を使います。 このペンダントでティーチングの修正や動作確認を行っていくのですが、一般的に使用されているペンダントの画面はプログラムが羅列された文字だらけの画面であり非常に複雑です。 また、例えば金属加工品において、全ての加工品が完全に同じ形状なことはまずありえません。ロボットは決められた動きを繰りかえす為、そういったワークごとのズレには対応できません。 上記のような課題により特に多品種少量生産の企業においてロボットを使いこなすのは至難の業といえるでしょう。ただ、近年ではこうした課題に対するソリューションが多く登場してきておりますので、本コラムではティーチングレスを実現させるための方法を紹介いたします。 2.オフラインティーチングソフト オフラインティーチングとは、実機を用いずにPCの操作にてロボットティーチングを実践する方法です。 本来ペンダントと呼ばれるリモコンの様なモノで、手動によるロボットの移動とポイント登録を繰り返して加工動作一連のPRGを作成していきますが、オフラインティーチングソフトは3D-CADデータを基にPC上でロボットプログラムの作成が可能となります。様々なシュミレーションを安全な環境で生産現場のロボットを停止せずに行う事が出来ます。 高機能型のソフトウェアでは加工開始点と終了点を指定するだけで、自動で加工パスを生成してくれるソフトもあります。 更に干渉確認や特異点回避(ロボットがエラーを起こしやすい場所)の機能もあり、実機を動かさずにほとんどのティーチング作業を完了させる事が出来ます。 ただし、あくまでもCADモデル上でのシュミレーションになりますので、実機での調整は必須です。 8割程度はオフラインティーチングで作成し、作ったPRGを実機に書き込んだのちに、ペンダントで微調整していく事で大幅にティーチングに掛かる時間を削減する事が出来ます。 非常に便利なソフトウェアですが、上述したとおり3D-CADが必須です。 自社での3D設計→自社生産であればこのようなソフトは絶大な効果を発揮出来ますが、外部から受注している仕事の場合難易度が高いのは事実です。 中小製造業では、今も2Dや手書きの図面がFAXでやり取りされる事がまだまだ多く、受注段階で3D-CADを貰える事はあまり無いという実態があります。 本来であれば受注直後にCADモデルが客先から支給され、それをもとにオフラインティーチングを実施し、現場の微調整をかけてロボットで着工という流れでものづくりをしていければ良いですが、現状ではそういう環境になっていない場合も多く、自社で3Dモデルの作成が必須となります。 3.センサー活用 3Dのレーザーセンサーやレーザースキャナーを活用することで、現物合わせて位置補正を行うことができます。そのため、ワークごとの形状差や溶接によるひずみがあってもワークの変化に対して自動補正をかけることができます。都度都度ティーチングの修正を行う必要がないため、位置ズレやワークの加工誤差・形状の変化が大きいものをロボットで取り扱っている場合は特に力を発揮します。 センサーにも多くの種類が存在しており、接触式で安価なタッチセンサーから、3Dスキャナーと高性能なソフトウェアを使った補正システムまで、幅広く存在しています。 センサーによっては、2次元のものや3次元的に補正をかけられるセンサーがあったり、対象の工程(溶接やハンドリングなど)に合ったセンサーなど多種多様なものがあるので、どの工程のどのワークを対象にするのが投資対効果の良いかをよく分析したうえで、それに合ったセンサーを検討されるのが良いでしょう。 ▼無料ダウンロードはこちらをクリック ▼無料ダウンロードはこちらをクリック 1.はじめに 昨今、日本でも急速にロボット導入が進み、大手・中堅企業はもちろんのこと中小製造業でもロボットが導入されていることが珍しくなくなりました。 しかしながら多くの企業に導入されているものの、実際活用できている企業はほんの一握りなのが現状です。活用できていない原因はいくつかありますが、主な原因の一つが「ティーチング」です。ロボットを動かすためにはロボットに動作を教え込む必要がありそのために必要な作業がティーチングになります。 ティーチング作業は非常に複雑、かつ専門知識を要する作業であり、専門のロボットプログラマーが行うのが一般的です。ロボットを動かすにはペンダント(操作パネル)を使います。 このペンダントでティーチングの修正や動作確認を行っていくのですが、一般的に使用されているペンダントの画面はプログラムが羅列された文字だらけの画面であり非常に複雑です。 また、例えば金属加工品において、全ての加工品が完全に同じ形状なことはまずありえません。ロボットは決められた動きを繰りかえす為、そういったワークごとのズレには対応できません。 上記のような課題により特に多品種少量生産の企業においてロボットを使いこなすのは至難の業といえるでしょう。ただ、近年ではこうした課題に対するソリューションが多く登場してきておりますので、本コラムではティーチングレスを実現させるための方法を紹介いたします。 2.オフラインティーチングソフト オフラインティーチングとは、実機を用いずにPCの操作にてロボットティーチングを実践する方法です。 本来ペンダントと呼ばれるリモコンの様なモノで、手動によるロボットの移動とポイント登録を繰り返して加工動作一連のPRGを作成していきますが、オフラインティーチングソフトは3D-CADデータを基にPC上でロボットプログラムの作成が可能となります。様々なシュミレーションを安全な環境で生産現場のロボットを停止せずに行う事が出来ます。 高機能型のソフトウェアでは加工開始点と終了点を指定するだけで、自動で加工パスを生成してくれるソフトもあります。 更に干渉確認や特異点回避(ロボットがエラーを起こしやすい場所)の機能もあり、実機を動かさずにほとんどのティーチング作業を完了させる事が出来ます。 ただし、あくまでもCADモデル上でのシュミレーションになりますので、実機での調整は必須です。 8割程度はオフラインティーチングで作成し、作ったPRGを実機に書き込んだのちに、ペンダントで微調整していく事で大幅にティーチングに掛かる時間を削減する事が出来ます。 非常に便利なソフトウェアですが、上述したとおり3D-CADが必須です。 自社での3D設計→自社生産であればこのようなソフトは絶大な効果を発揮出来ますが、外部から受注している仕事の場合難易度が高いのは事実です。 中小製造業では、今も2Dや手書きの図面がFAXでやり取りされる事がまだまだ多く、受注段階で3D-CADを貰える事はあまり無いという実態があります。 本来であれば受注直後にCADモデルが客先から支給され、それをもとにオフラインティーチングを実施し、現場の微調整をかけてロボットで着工という流れでものづくりをしていければ良いですが、現状ではそういう環境になっていない場合も多く、自社で3Dモデルの作成が必須となります。 3.センサー活用 3Dのレーザーセンサーやレーザースキャナーを活用することで、現物合わせて位置補正を行うことができます。そのため、ワークごとの形状差や溶接によるひずみがあってもワークの変化に対して自動補正をかけることができます。都度都度ティーチングの修正を行う必要がないため、位置ズレやワークの加工誤差・形状の変化が大きいものをロボットで取り扱っている場合は特に力を発揮します。 センサーにも多くの種類が存在しており、接触式で安価なタッチセンサーから、3Dスキャナーと高性能なソフトウェアを使った補正システムまで、幅広く存在しています。 センサーによっては、2次元のものや3次元的に補正をかけられるセンサーがあったり、対象の工程(溶接やハンドリングなど)に合ったセンサーなど多種多様なものがあるので、どの工程のどのワークを対象にするのが投資対効果の良いかをよく分析したうえで、それに合ったセンサーを検討されるのが良いでしょう。 ▼無料ダウンロードはこちらをクリック

AIを導入するならまずは自社のITインフラを確認しよう

2022.07.08

AIシステムの市場規模が急成長する一方で、そのプロジェクトの多くが消滅しています。その背景の1つに、従来のITインフラと、AIを実装するためのITインフラの違いがあると考えられています。 1.ITインフラがAIプロジェクトの成功を左右する 新型コロナウイルスの影響でDXへの取り組みは大きく加速しました。AIシステムへの投資意欲や投資金額も増加し、すでにAIは多くの業界において競争に勝ち抜く上での必須要素だと考え始められています。 AIプロジェクトの多くはPoC(概念検証)を実施し、そこで実現可否を判断します。しかしその段階で躓き、本番稼働に行きつけずに消滅してしまっているプロジェクトも多く存在します。米調査会社ガートナーによると、その割合は47%であり、約半数が本番稼働前に頓挫している現状となっています。また、同調査からは、全回答者の30%が「従来型のITインフラにAIソリューションを統合する際の複雑さがAIプロジェクト最大の障壁」だと考えていることも公表されています。つまり、ITインフラがAIプロジェクトの成功を左右する重要な要素となっているのです。 2.従来のITインフラとAIに対応できるインフラの違い 従来のITインフラとAIに対応できるインフラの最大の違いは「AI技術が発展途中であること」です。具体的には従来のITインフラにはない、「保守」と「拡張」の難しさの観点からご紹介します。 ・保守の難しさ AI分野は現在、世界中の大学・企業などが取り組む研究対象であり、その成果として日々さまざまなソフトウェアが公表されています。それらの多くはOSS(オープンソースソフトウェア)を組み合わせて構築されており、要は、ノウハウが整理されていないままの公開情報を組み合わせているため、その分不具合が生じる可能性も高いのです。企業がAIを導入する際も、この無償のOSSを使用することが多いのですが、セキュリティ面では企業のIT部門が求めるレベルの保守が無償のOSSでは提供されないのが一般的です。この点においてIT部門としては保守が受けられないことが大きなリスクとして捉え、保守ができないものは導入できないと考える企業も多くあります。 ・拡張の難しさ 従来のITインフラはAIプロジェクトによって拡張できることを想定しておらず、そもそも拡張できない状態である企業は多い現状です。それにより機会損失が発生する可能性もあります。 AIプロジェクトを始動する前に社内のITインフラをどのような基準で整備しているかを一度確認いただき、いざAIプロジェクトを始める際に上記のポイントについて問題がないかを確認してみてはいかがでしょうか。   ■無料ダウンロードAIを活用した類似案件検索システム導入事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory__00595 「こうなりたい!」と思っている経営者様におすすめ 見積作成時はベテラン担当者が過去の経験をフル活用して作成している→特定の担当者依存を解消したい 見積情報の共有範囲が不明確→情報共有を明確化したい 加工時間を参考にする場合は過去のファイルを参照→過去ファイルを探す時間を減らしたい 過去ファイルの存在は勘と経験頼り→勘と経験に依存した業務を無くしたい 目次 1、類似案件検索システムとは 2、類似案件検索システム導入後の効果 レポートの内容 AIを活用した類似案件検索システム導入事例 過去のPDF図面を参照する類似案件検索システム導入事例をご紹介   ■オンラインセミナー開催のお知らせ メーカー経営者のためのAI活用戦略セミナー ▼セミナーお申し込みはこちら▼ https://www.funaisoken.co.jp/seminar/088304   セミナー開催のお知らせ 取り組み事例に学ぶ!メーカー経営にAIを活⽤する具体的⽅法とは!! ■講座内容 ・第1講座 AI導入事例講座「メーカーでのAI取組事例」 営業AI化:営業部門でAIを活用し、属人化した営業スキルの標準化に取り組んでいるメーカーの事例 見積・提案AI化:営業スタッフの見積・提案業務をAIがサポート 受注予測AI化:AIを活用した受注予測により、売上見込みの精度向上 生産計画・生産管理AI化:AIを活用した生産計画・生産管理による生産性UP・利益率UP 生産技術AI化:AIを活用した生産現場での熟練技術の継承 外観検査AI化:AIを活用した外観検査の省人化&工程改善・品質UP 顧客対応AI化:営業時の顧客対応をAIがサポート ・第2講座 AI導入戦略講座「メーカー経営者が取り組むべきAI活用戦略とは」 メーカーの経営にAIを活用する方法 ”経営者目線”で知っておくべき製造業で実践できる具体的なAI活用とは? 漠然とした理論・概論ではなく、現場で即使えて実践的なAI導入手順 ■開催日程(全てオンライン開催) 2022/09/13 (火) 13:00~15:00 2022/09/15 (木) 13:00~15:00 2022/09/21 (水) 13:00~15:00 2022/09/22 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/088304   AIシステムの市場規模が急成長する一方で、そのプロジェクトの多くが消滅しています。その背景の1つに、従来のITインフラと、AIを実装するためのITインフラの違いがあると考えられています。 1.ITインフラがAIプロジェクトの成功を左右する 新型コロナウイルスの影響でDXへの取り組みは大きく加速しました。AIシステムへの投資意欲や投資金額も増加し、すでにAIは多くの業界において競争に勝ち抜く上での必須要素だと考え始められています。 AIプロジェクトの多くはPoC(概念検証)を実施し、そこで実現可否を判断します。しかしその段階で躓き、本番稼働に行きつけずに消滅してしまっているプロジェクトも多く存在します。米調査会社ガートナーによると、その割合は47%であり、約半数が本番稼働前に頓挫している現状となっています。また、同調査からは、全回答者の30%が「従来型のITインフラにAIソリューションを統合する際の複雑さがAIプロジェクト最大の障壁」だと考えていることも公表されています。つまり、ITインフラがAIプロジェクトの成功を左右する重要な要素となっているのです。 2.従来のITインフラとAIに対応できるインフラの違い 従来のITインフラとAIに対応できるインフラの最大の違いは「AI技術が発展途中であること」です。具体的には従来のITインフラにはない、「保守」と「拡張」の難しさの観点からご紹介します。 ・保守の難しさ AI分野は現在、世界中の大学・企業などが取り組む研究対象であり、その成果として日々さまざまなソフトウェアが公表されています。それらの多くはOSS(オープンソースソフトウェア)を組み合わせて構築されており、要は、ノウハウが整理されていないままの公開情報を組み合わせているため、その分不具合が生じる可能性も高いのです。企業がAIを導入する際も、この無償のOSSを使用することが多いのですが、セキュリティ面では企業のIT部門が求めるレベルの保守が無償のOSSでは提供されないのが一般的です。この点においてIT部門としては保守が受けられないことが大きなリスクとして捉え、保守ができないものは導入できないと考える企業も多くあります。 ・拡張の難しさ 従来のITインフラはAIプロジェクトによって拡張できることを想定しておらず、そもそも拡張できない状態である企業は多い現状です。それにより機会損失が発生する可能性もあります。 AIプロジェクトを始動する前に社内のITインフラをどのような基準で整備しているかを一度確認いただき、いざAIプロジェクトを始める際に上記のポイントについて問題がないかを確認してみてはいかがでしょうか。   ■無料ダウンロードAIを活用した類似案件検索システム導入事例解説レポート ▼事例レポート無料ダウンロードお申し込みはこちら▼ https://www.funaisoken.co.jp/dl-contents/smart-factory__00595 「こうなりたい!」と思っている経営者様におすすめ 見積作成時はベテラン担当者が過去の経験をフル活用して作成している→特定の担当者依存を解消したい 見積情報の共有範囲が不明確→情報共有を明確化したい 加工時間を参考にする場合は過去のファイルを参照→過去ファイルを探す時間を減らしたい 過去ファイルの存在は勘と経験頼り→勘と経験に依存した業務を無くしたい 目次 1、類似案件検索システムとは 2、類似案件検索システム導入後の効果 レポートの内容 AIを活用した類似案件検索システム導入事例 過去のPDF図面を参照する類似案件検索システム導入事例をご紹介   ■オンラインセミナー開催のお知らせ メーカー経営者のためのAI活用戦略セミナー ▼セミナーお申し込みはこちら▼ https://www.funaisoken.co.jp/seminar/088304   セミナー開催のお知らせ 取り組み事例に学ぶ!メーカー経営にAIを活⽤する具体的⽅法とは!! ■講座内容 ・第1講座 AI導入事例講座「メーカーでのAI取組事例」 営業AI化:営業部門でAIを活用し、属人化した営業スキルの標準化に取り組んでいるメーカーの事例 見積・提案AI化:営業スタッフの見積・提案業務をAIがサポート 受注予測AI化:AIを活用した受注予測により、売上見込みの精度向上 生産計画・生産管理AI化:AIを活用した生産計画・生産管理による生産性UP・利益率UP 生産技術AI化:AIを活用した生産現場での熟練技術の継承 外観検査AI化:AIを活用した外観検査の省人化&工程改善・品質UP 顧客対応AI化:営業時の顧客対応をAIがサポート ・第2講座 AI導入戦略講座「メーカー経営者が取り組むべきAI活用戦略とは」 メーカーの経営にAIを活用する方法 ”経営者目線”で知っておくべき製造業で実践できる具体的なAI活用とは? 漠然とした理論・概論ではなく、現場で即使えて実践的なAI導入手順 ■開催日程(全てオンライン開催) 2022/09/13 (火) 13:00~15:00 2022/09/15 (木) 13:00~15:00 2022/09/21 (水) 13:00~15:00 2022/09/22 (木) 13:00~15:00 お申し込みはこちらから⇒ https://www.funaisoken.co.jp/seminar/088304